TY - GEN TI - Existence and multiplicity of nontrivial solutions to the modified Kirchhoff equation without the growth and Ambrosetti-Rabinowitz conditions SN - 1417-3875 ID - acta75804 N1 - Bibliogr.: p. 16-18. ; összefoglalás angol nyelven N2 - The paper focuses on the modified Kirchhoff equation a + b Z RN |?u| 2 dx? ?u ? u?(u 2 ) + V(x)u = ? f(u), x ? R N, where a, b > 0, V(x) ? C(RN, R) and ? < 1 is a positive parameter. We just assume that the nonlinearity f(t) is continuous and superlinear in a neighborhood of t = 0 and at infinity. By applying the perturbation method and using the cutoff function, we get existence and multiplicity of nontrivial solutions to the revised equation. Then we use the Moser iteration to obtain existence and multiplicity of nontrivial solutions to the above original Kirchhoff equation. Moreover, the nonlinearity f(t) may be supercritical. UR - http://acta.bibl.u-szeged.hu/75804/ AV - public Y1 - 2021/// CY - Szeged A1 - Wang Zhongxiang A1 - Jia Gao KW - Kirchhoff-egyenlet KW - Differenciálegyenlet EP - 18 ER -