?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rft.relation=http%3A%2F%2Facta.bibl.u-szeged.hu%2F78329%2F&rft.title=Existence+of+positive+ground+state+solutions+of+critical+nonlinear+Klein-Gordon-Maxwell+systems&rft.creator=+Xu+Liping&rft.creator=+Chen+Haibo&rft.subject=01.+Term%C3%A9szettudom%C3%A1nyok&rft.subject=01.01.+Matematika&rft.description=In+this+paper+we+study+the+following+nonlinear+Klein%E2%80%93Gordon%E2%80%93Maxwell+system+%E2%88%92%E2%88%86u+%2B+%5Bm2+0+%E2%88%92+(%CF%89+%2B+%CF%86)+2+%5Du+%3D+f(u)+in+R3+%E2%88%86%CF%86+%3D+(%CF%89+%2B+%CF%86)u+in+R3+where+0+%3C+%CF%89+%3C+m0.+Based+on+an+abstract+critical+point+theorem+established+by+Jeanjean%2C+the+existence+of+positive+ground+state+solutions+is+proved%2C+when+the+nonlinear+term+f(u)+exhibits+linear+near+zero+and+a+general+critical+growth+near+infinity.+Compared+with+other+recent+literature%2C+some+different+arguments+have+been+introduced+and+some+results+are+extended.&rft.date=2022&rft.type=Foly%C3%B3irat&rft.type=NonPeerReviewed&rft.format=full&rft.language=hu&rft.identifier=http%3A%2F%2Facta.bibl.u-szeged.hu%2F78329%2F1%2Fejqtde_2022_044.pdf&rft.identifier=+++Xu+Liping%3B++Chen+Haibo%3A+++Existence+of+positive+ground+state+solutions+of+critical+nonlinear+Klein-Gordon-Maxwell+systems.++(2022)+++&rft.language=eng