?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rft.relation=http%3A%2F%2Facta.bibl.u-szeged.hu%2F78333%2F&rft.title=Positive+ground+state+of+coupled+planar+systems+of+nonlinear+Schr%C3%B6dinger+equations+with+critical+exponential+growth&rft.creator=+Chen+Jing&rft.creator=+Zhang+Xinghua&rft.subject=01.+Term%C3%A9szettudom%C3%A1nyok&rft.subject=01.01.+Matematika&rft.description=In+this+paper%2C+we+prove+the+existence+of+a+positive+ground+state+solution+to+the+following+coupled+system+involving+nonlinear+Schr%C3%B6dinger+equations%3A+%E2%88%92%E2%88%86u+%2B+V1(x)u+%3D+f1(x%2C+u)+%2B+%CE%BB(x)v%2C+x+%E2%88%88+R2+%E2%88%92%E2%88%86v+%2B+V2(x)v+%3D+f2(x%2C+v)+%2B+%CE%BB(x)u%2C+x+%E2%88%88+R2+where+%CE%BB%2C+V1%2C+V2+%E2%88%88+C(R2+%2C(0%2C+%2B%E2%88%9E))+and+f1%2C+f2+%3A+R2+%C3%97+R+%E2%86%92+R+have+critical+exponential+growth+in+the+sense+of+Trudinger%E2%80%93Moser+inequality.+The+potentials+V1(x)+and+V2(x)+satisfy+a+condition+involving+the+coupling+term+%CE%BB(x)%2C+namely+0+%3C+%CE%BB(x)+%E2%89%A4+%CE%BB0+p+V1(x)V2(x).+We+use+non-Nehari+manifold%2C+Lions%E2%80%99s+concentration+compactness+and+strong+maximum+principle+to+get+a+positive+ground+state+solution.+Moreover%2C+by+using+a+bootstrap+regularity+lifting+argument+and+L+q+-estimates+we+get+regularity+and+asymptotic+behavior.+Our+results+improve+and+extend+the+previous+results.&rft.date=2022&rft.type=Foly%C3%B3irat&rft.type=NonPeerReviewed&rft.format=full&rft.language=hu&rft.identifier=http%3A%2F%2Facta.bibl.u-szeged.hu%2F78333%2F1%2Fejqtde_2022_048.pdf&rft.identifier=+++Chen+Jing%3B++Zhang+Xinghua%3A+++Positive+ground+state+of+coupled+planar+systems+of+nonlinear+Schr%C3%B6dinger+equations+with+critical+exponential+growth.++(2022)+++&rft.language=eng