TY  - GEN
KW  - Schrödinger egyenlet
KW  -  Trudinger-Moser-egyenl?tlenség
A1  -  Chen Jing
A1  -  Zhang Xinghua
ID  - acta78333
UR  - http://acta.bibl.u-szeged.hu/78333/
N2  - In this paper, we prove the existence of a positive ground state solution to the following coupled system involving nonlinear Schrödinger equations: ??u + V1(x)u = f1(x, u) + ?(x)v, x ? R2 ??v + V2(x)v = f2(x, v) + ?(x)u, x ? R2 where ?, V1, V2 ? C(R2 ,(0, +?)) and f1, f2 : R2 × R ? R have critical exponential growth in the sense of Trudinger?Moser inequality. The potentials V1(x) and V2(x) satisfy a condition involving the coupling term ?(x), namely 0 < ?(x) ? ?0 p V1(x)V2(x). We use non-Nehari manifold, Lions?s concentration compactness and strong maximum principle to get a positive ground state solution. Moreover, by using a bootstrap regularity lifting argument and L q -estimates we get regularity and asymptotic behavior. Our results improve and extend the previous results.
N1  - Bibliogr.: p. 22-23. ; összefoglalás angol nyelven
TI  - Positive ground state of coupled planar systems of nonlinear Schrödinger equations with critical exponential growth
Y1  - 2022///
AV  - public
SN  - 1417-3875
ER  -