TY - GEN KW - Schrödinger egyenlet KW - Trudinger-Moser-egyenl?tlenség A1 - Chen Jing A1 - Zhang Xinghua ID - acta78333 UR - http://acta.bibl.u-szeged.hu/78333/ N2 - In this paper, we prove the existence of a positive ground state solution to the following coupled system involving nonlinear Schrödinger equations: ??u + V1(x)u = f1(x, u) + ?(x)v, x ? R2 ??v + V2(x)v = f2(x, v) + ?(x)u, x ? R2 where ?, V1, V2 ? C(R2 ,(0, +?)) and f1, f2 : R2 × R ? R have critical exponential growth in the sense of Trudinger?Moser inequality. The potentials V1(x) and V2(x) satisfy a condition involving the coupling term ?(x), namely 0 < ?(x) ? ?0 p V1(x)V2(x). We use non-Nehari manifold, Lions?s concentration compactness and strong maximum principle to get a positive ground state solution. Moreover, by using a bootstrap regularity lifting argument and L q -estimates we get regularity and asymptotic behavior. Our results improve and extend the previous results. N1 - Bibliogr.: p. 22-23. ; összefoglalás angol nyelven TI - Positive ground state of coupled planar systems of nonlinear Schrödinger equations with critical exponential growth Y1 - 2022/// AV - public SN - 1417-3875 ER -