?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rft.relation=http%3A%2F%2Facta.bibl.u-szeged.hu%2F78343%2F&rft.title=Positive+radial+solutions+for+a+class+of+quasilinear+Schr%C3%B6dinger+equations+in+R3&rft.creator=+Wang+Zhongxiang&rft.creator=+Jia+Gao&rft.creator=+Hu+Weifeng&rft.subject=01.+Term%C3%A9szettudom%C3%A1nyok&rft.subject=01.01.+Matematika&rft.description=This+paper+is+concerned+with+the+following+quasilinear+Schr%C3%B6dinger+equations+of+the+form%3A+%E2%88%92%E2%88%86u+%E2%88%92+u%E2%88%86(u+2+)+%2B+u+%3D+%7Cu%7C+p%E2%88%922u%2C+x+%E2%88%88+R+3+where+p+%E2%88%88+(2%2C+12).+By+making+use+of+the+constrained+minimization+method+on+a+special+manifold%2C+we+prove+that+the+existence+of+positive+radial+solutions+of+the+above+problem+for+any+p+%E2%88%88+(2%2C+12).&rft.date=2022&rft.type=Foly%C3%B3irat&rft.type=NonPeerReviewed&rft.format=full&rft.language=hu&rft.identifier=http%3A%2F%2Facta.bibl.u-szeged.hu%2F78343%2F1%2Fejqtde_2022_058.pdf&rft.identifier=+++Wang+Zhongxiang%3B++Jia+Gao%3B++Hu+Weifeng%3A+++Positive+radial+solutions+for+a+class+of+quasilinear+Schr%C3%B6dinger+equations+in+R3.++(2022)+++&rft.language=eng