?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rft.relation=http%3A%2F%2Facta.bibl.u-szeged.hu%2F78350%2F&rft.title=On+a+generalized+cyclic-type+system+of+difference+equations+with+maximum&rft.creator=+Stefanidou+Gesthimani&rft.creator=+Papaschinopoulos+Garyfalos&rft.subject=01.+Term%C3%A9szettudom%C3%A1nyok&rft.subject=01.01.+Matematika&rft.description=In+this+paper+we+investigate+the+behaviour+of+the+solutions+of+the+following+k-dimensional+cyclic+system+of+difference+equations+with+maximum%3A+xi(n+%2B+1)+%3D+max+(+Ai+x+p+i+(n)+x+q+i%2B1+(n+%E2%88%92+1)+%2C+i+%3D+1%2C+2%2C+.+.+.+%2C+k+%E2%88%92+1%2C+xk+(n+%2B+1)+%3D+max+(+Ak+x+p+k+(n)+x+q+1+(n+%E2%88%92+1)+where+n+%3D+0%2C+1%2C+.+.+.+%2C+Ai+%3E+1%2C+for+i+%3D+1%2C+2%2C+.+.+.+%2C+k%2C+whereas+the+exponents+p%2C+q+and+the+initial+values+xi(%E2%88%921)%2C+xi(0)%2C+i+%3D+1%2C+2%2C+.+.+.+%2C+k+are+positive+real+numbers.&rft.date=2022&rft.type=Foly%C3%B3irat&rft.type=NonPeerReviewed&rft.format=full&rft.language=hu&rft.identifier=http%3A%2F%2Facta.bibl.u-szeged.hu%2F78350%2F1%2Fejqtde_2022_065.pdf&rft.identifier=+++Stefanidou+Gesthimani%3B++Papaschinopoulos+Garyfalos%3A+++On+a+generalized+cyclic-type+system+of+difference+equations+with+maximum.++(2022)+++&rft.language=eng