- Subject (16)
- 01. Natural sciences (16)
- 01.01. Mathematics (16)
- 01.01.01. Pure mathematics, applied mathematics (16)
**01.01.01.06. Geometry**(16)

- 01.01.01. Pure mathematics, applied mathematics (16)

- 01.01. Mathematics (16)

- 01. Natural sciences (16)

Group by: Creators | Item Type

Number of items at this level: **15**.

Balogh József and Morris Robert and Samotij Wojciech:
*Independent sets in hypergraphs.*

Csajbók Bence:
*Inverse-closed linear subspaces and related problems.*

Giulietti Massimo and Bartoli Daniele:
*Small complete caps and saturating sets in Galois spaces I-II.*

Héger Tamás and Takáts Marcella:
*Semi-resolving sets for PG(2, q).*

Kiss György:
*Semiovals and semiarcs.*

Korchmáros Gábor:
*Intersection of an oval and a unital in a finite desarguesian plane.*

Kozma József:
*Regular polygons : the transformation approach.*

Mazzocca Francesco and Blokhuis A. and Marino G.:
*Generalized hyperfocused arcs in P G(2, p).*

Nagy Gábor P. and Korchmáros Gábor and Pace N.:
*Projective realization of finite groups.*

Napolitano Vito:
*k-sets of PG(3, q) with two intersection numbers with respect to planes.*

Pavese Francesco:
*Hyperovals on Hermitian generalized quadrangles.*

Siciliano Alessandro:
*Translation ovoids of finite classical polar spaces.*

Sonnino Angelo:
*Hughes planes and their collineation groups.*

Szőnyi Tamás:
*Lacunary polynomials and finite geometry.*

Takáts Marcella and Héger Tamás:
*Resolving sets in finite projective planes.*