On the differentiability of semi-group operators.

By EINAR HILLE in New Haven, Conn.

1. Let $\mathfrak X$ be a complex (B)-space, A a closed linear operator on $\mathfrak X$ to itself whose domain $\mathfrak D[A]$ is dense in $\mathfrak X$. Suppose that the operator $\lambda I - A$ has a bounded inverse $R(\lambda; A)$ for each fixed real positive value of λ and that

$$(1.1) \lambda || R(\lambda; A)|| \leq 1, \quad \lambda > 0.$$

Under these assumptions it is known (see E. HILLE [1], p. 238 and K. Yosida [2], p. 15) that A is the infinitesimal generator of a semi-group $\mathfrak{S} = \{T(\xi)\}, \xi > 0$, of linear bounded operators $T(\xi)$ with the properties

(i)
$$T(\xi_1) T(\xi_2) = T(\xi_1 + \xi_2), \ \xi_1 > 0, \ \xi_2 > 0,$$

- (ii) $||T(\xi)|| \leq 1$,
- (iii) $\lim_{\xi \to 0} T(\xi) x = x, \quad x \in \mathcal{X}.$

Here (iii) implies the further property $\lim_{\xi \to \xi_0} T(\xi)x = T(\xi_0)x$ for $\xi_0 > 0$. Conversely, if a semi-group $\mathfrak S$ with the properties (i), (ii) and (iii) is given, then it has an infinitesimal generator A which is a linear closed operator whose domain $\mathfrak D[A]$ is dense in $\mathfrak X$. Further the resolvent $R(\lambda; A)$ exists for $\mathfrak R(\lambda) > 0$ and

(1.2)
$$\sigma \| R(\sigma + i\tau; A) \| \leq 1, \ \lambda = \sigma + i\tau, \ \sigma > 0.$$

For $x \in \mathfrak{D}[A]$ we have

(1.3)
$$\lim_{\delta \to 0} \frac{1}{\delta} [T(\xi + \delta) x - T(\xi) x] = T'(\xi) x = AT(\xi) x = T(\xi) Ax,$$

in the sense of strong convergence.

The assumptions on A stated above imply that $T(\xi)$ is strongly continuous for $\xi \ge 0$ and no further continuity properties may be asserted in general. Similarly, for $\xi > 0$ the operator $T'(\xi) = AT(\xi)$ is ordinarily an unbounded operator whose domain of definition contains $\mathfrak{D}[A]$ and may coincide with $\mathfrak{D}[A]$. For the higher derivatives we have a similar situation; the domain of $T^{(n)}(\xi) = A^n T(\xi)$ contains $\mathfrak{D}[A^n]$ which is dense in \mathfrak{X} for every n and $\bigcap_n \mathfrak{D}[A^n]$ is also dense in \mathfrak{X} .

Thus if we want to get semi-group operators with stronger continuity and differentiability properties, we must impose stronger restrictions on A. Two sets of such conditions were given in $\S 12.2$ of [1]. The first set give

20 E. Hille

continuity of $T(\xi)$ in the uniform operator topology for $\xi > 0$, but not for $\xi = 0$, nor the existence of bounded derivatives, while the second set implies the existence of derivatives of all orders for $\xi > 0$ but not analyticity. In view of this situation we shall investigate the existence of derivatives of semi-group operators in the present note.

2. We start with

Theorem 1. If for a positive ξ_0 the semi-group operator $T(\xi_0)$ maps \mathfrak{X} upon a subset of $\mathfrak{D}[A]$, then $T'(\xi) = AT(\xi)$ exists as a bounded operator for $\xi \geq \xi_0$. Moreover, $T^{(n)}(\xi) = A^n T(\xi)$ exists as a bounded operator for $\xi \geq n\xi_0$, $n = 1, 2, 3, \ldots$

Proof. $AT(\xi_0)$ is a linear closed operator which is defined everywhere in \mathfrak{X} , hence it is bounded. Since $AT(\xi) = AT(\xi_0) T(\xi - \xi_0)$ for $\xi > \xi_0$, it follows that $AT(\xi)$ is also bounded. Further, for $\xi \ge n\xi_0$ we have

(2.1)
$$T^{(n)}(\xi) = A^n T(\xi) = \left[A T\left(\frac{\xi}{n}\right) \right]^n, \quad n = 1, 2, 3, \dots$$

so that the higher derivatives exist as asserted.

Corollary. If $T(\xi)[\mathfrak{X}] \subset \mathfrak{D}[A]$ for each $\xi > 0$, then $T^{(n)}(\xi)$ exists as a bounded operator on \mathfrak{X} to \mathfrak{X} for each $\xi > 0$ and n = 1, 2, 3, ...

Conversely, if $T'(\xi)$ exists as a bounded operator for $\xi = \xi_0$, then the limit in the first member of (1.3) exists for all x when $\xi = \xi_0$, that is, $T(\xi_0)[\mathfrak{X}] \subset \mathfrak{D}[A]$ so that the condition of Theorem 1 is necessary as well as sufficient.

Theorem 2. If $T(\xi)$ satisfies (ii) and if $T'(\xi)$ exists as a bounded operator for $\xi > \xi_0$, then $||T'(\xi)||$ is a monotone decreasing function of ξ in (ξ_0, ∞) .

For if $\delta > 0$ then $||T'(\xi + \delta)|| = ||T'(\xi)T(\delta)|| \le ||T'(\xi)||$. The same conclusion obviously holds for $||T^{(n)}(\xi)||$ in $(n\xi_0, \infty)$.

In particular, it follows that $||T'(\xi)||$ tends to a finite or infinite limit when ξ decreases to ξ_0 . If $\xi_0 > 0$, it may very well happen that $\lim_{\xi \to \xi_0} ||T'(\xi)||$ is finite. In order to see this, we shall introduce a class of operators which will be used repeatedly in the following (cf. [1], Theorems 18. 2. 1 and 18. 4. 1). Let $\mathfrak{X} = L_2(-\infty, \infty)$, let F(u) be the Fourier transform of $f(t) \in \mathfrak{X}$ and set

(2.2)
$$T(\xi)[f] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\xi \varrho(u) + itu} F(u) du,$$

where $\varrho(u)$ is a continuous function whose real part is never negative and the integral exists in the sense of mean convergence. This defines a semi-group of linear operators in $\mathfrak X$ and $\|T(\xi)\|$ is the essential supremum of

 $|e^{-\xi\varrho(u)}|$ and hence ≤ 1 . Here we choose

$$\varrho(u) = |u| + ie^{\alpha |u|}, \ \alpha > 0.$$

A simple calculation shows that $T'(\xi)$ exists as a bounded operator for $\xi \ge \alpha$ but not for $\xi < \alpha$. The situation is different for $\xi_0 = 0$ since T'(0) is bounded if and only if A is bounded in which case $T(\xi) = \exp(\xi A)$, that is, $T(\xi)$ is an entire function of ξ of exponential type.

We shall now consider the case in which $\xi_0 = 0$, that is, $T'(\xi)$ exists as a bounded operator for $\xi > 0$. The rate of growth of $||T'(\xi)|| \equiv g(\xi)$ as $\xi \to 0$ is of fundamental importance for the following. We have observed above that $g(\xi)$ can stay bounded if and only if A is a bounded operator. Actually a sharper result holds.

Theorem 3. A is bounded and $T(\xi) = \exp(\xi A)$ if

(2.3)
$$\limsup_{\xi \to 0} \xi \| T'(\xi) \| < \frac{1}{e}.$$

Proof. Since $T(\xi)$ has derivatives of all orders, we may use Taylor's theorem obtaining

(2.4)
$$T(\xi) = \sum_{k=0}^{n-1} \frac{(\xi - \alpha)^k}{k!} A^k T(\alpha) + \frac{1}{(n-1)!} \int_{-\infty}^{\xi} (\xi - \eta)^{n-1} A^n T(\eta) d\eta.$$

Using (2.1) and (2.3) we see that the remainder tends to zero when $n \to \infty$ provided $0 < \alpha \le \xi < \alpha \left(1 + \frac{1}{\varrho}\right)$ where ϱ equals e times the left member of (2.3). It follows that the Taylor expansion converges for these values of ξ and represents $T(\xi)$. But the power series converges for $|\xi - \alpha| < \frac{\alpha}{\varrho}$ and in this circle it defines a semi-group operator which is the analytic continuation of $T(\xi)$. It follows that $T(\xi)$ is analytic in some neighborhood of the origin and this requires that $T(\xi)$ is an entire function so that $T(\xi) = \exp(\xi A)$ with a bounded operator A.

Corollary. If $T(\xi)$ is a proper semi-group operator which has a bounded derivative for each positive ξ then

(2.5)
$$\limsup_{\xi \to 0} \xi \|T'(\xi)\| \ge \frac{1}{e}.$$

This is actually the best possible result of its kind, for if we take $\varrho(u) = |u|$ in (2.2), that is, if we form the Poisson-Abel transform of the Fourier integral, then $\xi ||T'(\xi)|| \equiv \frac{1}{e}$ for $\xi > 0$. On the other hand, there is no upper limit for the rate of growth of $||T'(\xi)||$ when $\xi \to 0$. In order to see this, we have merely to choose $\varrho(u) = |u| + ie^{\varphi(u)}$ where $\varphi(u) = \varrho(u)$. The slower $u^{-1}\varphi(u) \to 0$ when $|u| \to \infty$, the faster grows the norm of $T'(\xi)$ when

 $\xi \to 0$ and by a suitable choice of $\varphi(u)$ we can achieve that the norm grows faster than a preassigned function of ξ .

3. Conditions (i), (ii) and (iii) imply that $R(\lambda; A)$ exists for $\sigma > 0$ and satisfies (1.2). Ordinarily no more may be asserted, but if $T(\xi)$ has derivatives, the resolvent set becomes more extensive.

Theorem 4. Suppose that $T(\xi)$ is differentiable for $\xi > 0$ and set (3.1) $||T'(\xi)|| = g(\xi) = \xi G(\xi)$.

Let $\delta(\tau)$ be the distance of the point $1+\tau i$ from the spectrum of A. For large values of $|\tau|$ we have

$$\delta(\tau) > \frac{1}{3\eta(\tau)},$$

where $\eta(\tau)$ is the unique root of the equation

$$(3.3) G(\eta) = |\tau|.$$

Proof. Since

$$R(\lambda; A) = \sum_{n=0}^{\infty} \left[R(\lambda_0; A) \right]^{n+1} (\lambda_0 - \lambda)^n$$

converges for $|\lambda - \lambda_0| ||R(\lambda_0; A)|| < 1$, it follows that

$$\delta(\tau_0) \|R(\lambda_0; A)\| \ge 1, \ \lambda_0 = 1 + i\tau_0.$$

Thus (3.2) is implied by

(3.4)
$$||R(1+\tau i;A)|| < 3\eta(\tau).$$

But

$$R(\lambda; A) = \int_0^\infty e^{-\lambda \xi} T(\xi) d\xi = \int_0^\eta + \int_\eta^\infty = J_1 + J_2,$$

where $\eta = \eta(\tau)$ is chosen as indicated above. We note that $G(\xi)$ is strictly decreasing from $+\infty$ to 0 when ξ goes from 0 to $+\infty$, so the equation (3.3) has a unique root and if $|\tau|$ is sufficiently large, $\eta(\tau)$ is less than one. Without restricting the generality, we may assume that (2.5) holds so that $\eta(\tau)$ is at least $O(|\tau|^{-\frac{1}{2}})$ when $|\tau| \to \infty$. For J_1 we have the trivial estimate

 $\eta(\tau)$ is at least $O(|\tau|^2)$ when $|\tau| \to \infty$. For J_1 we have the trivial estimate $||f_1|| \le \eta$. An integration by parts gives

$$||J_2|| \leq \frac{1}{|\lambda|} [1 + g(\eta)].$$

In view of the choice of $\eta(\tau)$ we see that (3.4) holds for large values of $|\tau|$ and consequently also the desired relation (3.2).

The resulting estimate is not particularly accurate, mainly on account of the crude estimate used for J_1 . The latter integral is of the same order of magnitude as

$$\int_{0}^{\eta} \left[T\left(\xi + \frac{\pi}{|\tau|}\right) - T(\xi) \right] d\xi.$$

This suggests that a study of the modulus of continuity of $T(\xi)$ in $L(0, \eta)$ might lead to further improvements of the estimate. We shall not pursue this possibility here, however. The same method as used above leads to

Theorem 5. If $T(\xi)$ is differentiable for $\xi > 0$ and if $\log g(\xi) \in L(0,1)$, then

$$\left\{\int_{-1}^{-1}+\int_{-1}^{\infty}\left\{\|R(1+\tau i;A)\|\frac{d\tau}{|\tau|}<\infty.\right.\right\}$$

Proof. If $\log g(\xi) \in L(0, 1)$ so does $\log G(\xi)$. Without restricting the generality we may suppose that $G(\xi)$ is absolutely continuous, since otherwise we may replace $G(\xi)$ by an absolutely continuous dominant having the same integrability properties. In view of (3.4) the integral in (3.5) is dominated by a constant multiple of

$$\int_{0}^{\infty} \eta(\tau) \frac{d\tau}{\tau} = -\int_{0}^{\eta_{0}} \eta \frac{G'(\eta)}{G(\eta)} d\eta = \int_{0}^{\eta_{0}} \log G(\eta) d\eta.$$

Here we have used the fact that $\eta \log G(\eta) \to 0$ with η and that $G(\eta_0) = 1$. This completes the proof.

The condition $\log g(\xi) \in L(0,1)$ is probably far too restrictive for the desired conclusion. In fact there are transformations of type (2.2) for which (3.5) holds and merely $\log \log g(\xi) \in L(0,1)$. For this class of transformations the condition $\log \log g(\xi) \in L(0,1)$ is the best possible of its kind which will ensure convergence of (3.5). In order to prove an improved version of Theorem 5 with $\log g(\xi)$ replaced by $\log \log g(\xi)$ it would be sufficient to prove that

$$||f_1|| \leq \frac{\eta}{\log |x|} .$$

4. Theorem 4 suggests that if $\delta(\tau)$ grows sufficiently fast with $|\tau|$, then the semi-group operator $T(\xi)$ generated by A might be differentiable. We shall prove

Theorem 6 If the operator A satisfies the conditions of section 1, if $||R(\lambda;A)| \to 0$ when $\lambda \to \infty$ in such a manner that the distance of λ from the spectrum of A becomes infinite, and if, for every fixed positive K, the inequality $\delta(\tau) > K \log |\tau|$ holds except in a set of intervals over which the total variation of τ^2 is finite, then the operator $T(\xi)$ generated by A has derivatives of all orders for $\xi > 0$.

Proof. We know in advance that $T(\xi)$ exists and has the properties (i), (ii), and (iii). By Theorem 1 it is sufficient to prove the existence of $T'(\xi)$ for $\xi > 0$. For this purpose we consider the integral $\int e^{\lambda \xi} R(\lambda; A) d\lambda$ taken along a closed contour PQRSP where PQ, QR, and RS are straight line segments and SP is an arc of the curve $\Gamma: \lambda = 1 - \frac{1}{2} \delta(\tau) + \tau i$, $Q = 1 - \omega i$

 $R=1+\omega i$ while the imaginary part of P equals that of Q and the imaginary part of S equals that of R. We let $\omega \to \infty$; using the fact that $\|R(\lambda;A)\|$ tends uniformly to zero on and to the right of Γ , one sees that the integrals along the horizontal line segments PQ and RS tend to zero. That the integral along the arc PS of the curve Γ tends to a limit when $\omega \to \infty$ follows from the absolute convergence of the resulting integral which in its turn follows from the absolute convergence of the integral (4.2) discussed below. It follows that the integral from Q to R along the vertical line tends to a limit in the uniform operator topology when $\omega \to \infty$. But for $x \in \mathfrak{D}[A]$ we have (see Theorem 11.7.1 of [1])

$$T(\xi) x = \lim_{\omega \to \infty} \frac{1}{2\pi i} \int_{1-\omega i}^{1+\omega i} e^{\lambda \xi} R(\lambda; A) x \, d\lambda,$$

whence it follows that

(4.1)
$$T(\xi) = \frac{1}{2\pi i} \int_{\Gamma} e^{\lambda \xi} R(\lambda; A) d\lambda.$$

Formally the derivative of $T(\xi)$ is given by

(4. 2)
$$T'(\xi) = \frac{1}{2\pi i} \int_{\Gamma} e^{\lambda \xi} \lambda R(\lambda; A) d\lambda,$$

and all we have to do in order to prove the theorem is to show the absolute convergence of this integral for $\xi > 0$. The norm of this integral is dominated by a constant multiple of

$$(4.3) e^{\frac{\varepsilon}{2}} \int_{-\infty}^{\infty} |\tau| e^{-\frac{1}{2} \frac{\varepsilon}{2} \delta(\tau)} d\tau.$$

The range of integration may now be split into two subsets E_1 and E_2 . In E_1 we shall have $\delta(\tau) > (6/\xi) \log |\tau|$ and $|\tau| > 1$ so that the integral over E_1 converges as $\int_1^\infty \tau^{-2} d\tau$, while the integral over E_2 is dominated by the total variation of τ^2 over E_2 which is finite by assumption. This completes the proof.

References.

- [1] E. Hille, Functional Analysis and Semi-groups. American Math. Society Colloquium Publications, Vol. XXXI, (New York, 1948).
- [2] K. Yosida, On the differentiability and the representation of one-parameter semi-group of linear operators, *Journal Math. Society of Japan*, 1 (1948), pp. 15-21.

(Received August 5, 1949.)