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On the differentiability of semi-group operators. 
By ElNAR HlLLE in New Haven, Conn. 

1. Let X be a complex (S)-space, A a closed. linear operator on X to 
itself whose domain ©[,4] is dense in .X. Suppose that the operator I I — A 
has a bounded inverse R(l; A) for each fixed real positive value of X and that 

< 1 . 0 ¿ | | / ? ( 2 ; 4 ) | | < 1, ' ¿ > 0 . 

Under these assumptions it is known (see E. H I L L E [1], p. 238 and K. Y O S I D A 

[2], p. 15) that A- is the infinitesimal generator of a semi-group S = {7(£)}, 
£ > 0, of .linear bounded operators T(£) with the properties 

(0 T&)T&)=T& + $S), 0, 
(ii) | | 7 < S ) | | < 1 , 

<iii) lim T(t)x = x, 

Here (iii) implies the further property lim T(i)x= T(S,n)x for H„ > 0. Con-
i - h 

versely, if a semi-group © with the properties (i), (ii) and (iii) is given, 
then it has an infinitesimal generator A which is a linear closed operator 
whose domain £)[.4] is dense in Further the resolvent /?(A;j4) exists for 
:){(<*) > 0 and 
<1.2) a\\R(a+ir; A) l , l=a+ir, a > 0. 
For x 6 S [ / l ] we have 

(1 .3) lim i - [ 7 ( ; + d ) x — 7 ( £ ) x ] = T'(Z)x = AT(£)x= T{l)Ax, 
••> . (I o 

in the sense of strong convergence. 
. The assumptions on A stated above imply that T ( | ) is strongly conti-

nuous for t ; > 0 and no further continuity properties! may be asserted in 
general. Similarly, for £ > 0 the operator T' (?) = A T(E) is ordinarily an un-
bounded operator whose domain of definition contains £)[A| and may coincide 
with For the higher derivatives we have a similar situation!; the domain 
•of 7 (n )(£) = i4" T(t) contains which is dense in X for every n and 
n„£>[j4"] is also dense in ,Y. 

Thus if we want to get semi-group operators with stronger continuity 
and differentiability properties, we must impose stronger restrictions on A. 
T w o sets of such conditions were given in § 12 .2 of [1]. The first set give 
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continuity of T(£) in the uniform operator topology for § > 0, but not for 
1 = 0, nor the existence of bounded derivatives, while the second set implies 
the existence of derivatives of all orders for | > 0 but not analyticity. In view 
of this situation we shall investigate the existence of derivatives of semi-group 
operators in the present note. 

2. We start with 
Theorem 1. If for a positive the semi-group operator T(£0) maps 

X upon a subset of £>[.4], then T'{$) = AT(£) exists as a bounded operator 
for Moreover, T(n) (¿) = A" T(t,) exists as a bounded operator for 
n= 1, 2, 3 

P r o o f . AT(£0) is a linear closed operator which is defined everywhere 
in X, hence it is bounded. Since A 7 © = A T(&) 7(2—§,) for § > £0, it follows 
that AT(£) is also bounded. Further, for we have 

(2.1) 7 ( n )(£) = ,4"7(£) = AT\f / 1 = 1 , 2 , 3 , . : . 

so that the higher derivatives exist as asserted. 

C o r o l l a r y . If 7 ( £ ) [ £ ] - c © [ 4 ] for each £ > 0 , then Tin){$) exists as a 
bounded operator on to 2i for each £ > 0 and n = 1, 2, 3 , . . . 

Conversely, if 7 ' (£) exists as a bounded operator for | = ?0, then the 
limit in the first member of (1.3) exists for all x when l = | 0 , that is,. 
7(£0) [X] c S [ i 4 ] so that the condition of Theorem 1 is necessary as well as-
sufficient. 

T h e o r e m 2. If T(t) satisfies (ii) and if T'(?) exists as a bounded 
operator for £ > E0, then || 7 '(£) || is a monotone decreasing function o f t ire 
(So,0 0)- • 

For if d > 0 then || 7 ' ( t + d)|| = || 7 ' © 7(d) | | ^ || T(£) | | . The same con-
clusion obviously holds for | | 7 ( n ) ( | ) | | ' i n (n£0, 

In particular, it follows, that | |7 '(S) | | tends to a finite or infinite limit: 
when £ decreases to S0. If £ 0 > 0 , it may very well happen that lim | |7'(£)| |! 

is finite. In order to see this, we shall introduce a class of operators which, 
will be used repeatedly in the following (cf. [1], Theorems 18. 2. 1 and 18. 4.1).. 
Let X = ¿2 (— °°> °°)> let F{u) be the Fourier transform of f ( t ) 6 3£ and set . 

(2. 2) 7(I) [/] = - J g-fif <»>+«« F(u) du, 

where q(u). is a continuous function whose real part is never negative and 
•the integral exists in the sense of mean convergence. This defines a semi-
group of linear operators in X and | |7(§)| | is the essential supremum of 
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|e-fp(»)| and hence <11. Here we choose 

p ( « ) = | u | + / e a l " l , a > 0 . 

A simple calculation shows that 7 '(§) exists as a bounded operator for s i s « 
but not for § < a. The situation is different for £0 = 0 since 7 ' (0 ) is bounded 
if and only if A is bounded in which case T(%) = exp(£A), that is, 7(S) is 
an entire fiinction of £, of exponential type. 

We shall now consider the case in which ?0 = 0, that is, 7 ' (£) exists 
as a bounded operator for § > 0 . The rate of growth of || 7'(H)|| = g ( £ ) as 
£->-0 is of fundamental importance.for the following. We have observed above 
that can stay bounded if and only if A is a bounded operator. Actually 
a sharper result holds. 

T h e o r e m 3. A is bounded and. T(£) = exp(£A) if 

(2 .3 ) ' l i m s u p £ | | 7 ' ( H ) | | < - i . 

P r o o f . Since 7(2) has derivatives of all orders, we may use Taylor's 
theorem obtaining . 

i 

( 2 . 4 ) R ^ ^ X ^ ^ ^ T ^ + ^ - I ^ J < £ - V R L A " T ( T I ) D V : 

a 
Using (2. 1) and (2.3) we see that the remainder tends to zero when ;;->oo 

provided 0 < a < ; £ < a^l + J - j where q equals e times the left member of 

(2. 3). It follows that the Taylor expansion converges for these values of E 
a 

and represents 7(g). But the'power series converges for — a | < — and in 
e 

this circle it defines a semi-group operator which is the analytic continuation 
of 7(£). It follows that 7(2) is analytic in some neighborhood of the origin 
and this requires that 7 ( | ) is an entire function so that 7(£) = exp (£.4) with 
a bounded operator A. 

C o r o l l a r y . If 7(§) is a proper semi-group operator which has a bounded 
derivative for each positive § then 

(2 .5) l i m s u p S | | 7 ' ( H ) | | ; > l . 
• e 

This is actually the best possible result of its kind, for if we take 
(>(«) = |« | in (2.2) , that .is, if we form the Poisson-Abel transform of the 

Fourier integral, then £ | | 7 ' (£ ) | | = -^- f o r . ^ > 0 . On the other hand, there is 

no upper limit for the rate of growth of | | 7 ' ( | ) | | when £ + 0. ¡n order to see 
this, we have merely to choose Q(U) = |u | -\-ievM where q>(u) = o(u). The 
slower u _ 1 9 ) ( u ) ^ 0 when |«|-*-oo, the faster grows the norm of 7 ' ( | ) when 
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E->-0 and by a suitable choice of q>(u) we can achieve that the norm grows 
faster than a preassigned function of 

3. Conditions (i), (ii) and (iii) imply that R(l;A) exists for < j > 0 and 
satisfies (1 .2 ) . Ordinarily no more may be asserted, but if T(£) has deriva-
tives, the resolvent set becomes more extensive. 

T h e o r e m 4. Suppose that T(£) is differentiable for £ > 0 and set 

(3 .1 ) I | 7 v ( D H = ^ ) = i g ; O . 
Let d(x) be the distance of the point 1 -{-ii from ihe spectrum of A. For large 
values of |t| we have 

(3 .2) <5(t)> 1 

3V(t)> 

where r](z) is the unique root of the equation 

( 3 . 3 ) G(ri) = |t|. 

P r o o f . Since 

m A ) = 2 №o, ¿ ) R + 1 i h - w 
11=0 

converges for |A — A0| ||/?(*„; j4)|| < 1, it follows that 

-̂ o — 1 -f-
Thus (3. 2) is implied by 
( 3 . 4 ) U T F O + W M I L L O ^ ) . 

But 
oo J; orj 

/?(A; A) = T® dt = f+J +/2, 
' . .0 0 »; 

where rj = •>](%) is chosen as indicated above. We note that G(§) is strictly 
decreasing from + o o to 0 when | goes from 0 to + o o , so the equation 
(3 .3 ) has a unique root and if \t\ is sufficiently large, j?(t) is less than one. 
Without restricting the generality, we may assume that (2. 5) holds so that 

i]{€) is at least 0(\t\ 2 ) when |T | -VOO. For J x we have the trivial estimate 
l l / i l l^7?- An integration by parts gives 

In view of the choice of >;(r) we see that (3 .4) holds for large values of | t | 
and consequently also the desired relation (3 .2) . 

The resulting estimate is not particularly accurate, mainly on account 
of the crude estimate used for / l v The latter integral is of the same order 
of magnitude as 

>i 

1 dl 
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This suggests that a study of the modulus of continuity of in L(0, ??) 
might lead to further improvements of the estimate. We shall not pursue this 
possibility here, however. The same method as used above leads to 

T h e o r e m 5. / / T(£) is differentiate for £ > 0 and if log g(t) € L (0,1 ), then 
- 1 00 

(3.5) ' j J + J J | | / ? ( l - | - T / ; y l ) | | ^ < o o . 
-00 1 • - . 

P r o o f . If. l og£(£)£L(0 , 1) so does log G (I). Without restricting the 
generality we may suppose that G(£) is absolutely continuous, since otherwise 
we may replace G(£) by an absolutely continuous dominant having the same 
integrability properties. In view of (3. 4) the integral in (3. 5) is dominated 
by a constant multiple of 

00 '7o Vo 

J v(T) = _ J n dV = j log G (r,) drj. 
1 - 0 0 

Here we have used the fact that »/'log G-(»?)0 with rj and that G (»?<,) = 1. 
This completes the proof. 

The condition logg(Ç) (0, 1) is probably- far too restrictive for thé 
desired conclusion. In fact there are transformations of type (2.2) for which 
(3.5) holds and merely loglogg'(E) € L(Q, l ) . 'For this class of transformations 
the condition loglog^(£) eL(0 ,1 ) is the best possible of its kind which will 
ensure convergence of (3.5). In order to prove an improved version of 
Theorem 5 with l o g g ^ ) replaced by loglogg-(£) it would be sufficient to 
prove that 

( 3 - 6 > ' L L ^ - . L ^ M • . 

4. Theorem 4 suggests that if ô(x) grows sufficiently fast with | t | , 
then the semi-group operator T(£) generated by A might be differentiable. 
We shall prove 

T h e o r e m 6. If the operator A satisfies the conditions of section 1, if 
| |7?(/; /4) | ->0 when À->ca in such a manner that the distance of X from the 
spectrum of A becomes infinite, and i f , for .every fixed positive K, the inequa-
lity <5(t) > A'log| ' t j holds except in a set of intervals over which the total va-
riation of %% is finite, then the operator 7(£) generated by A has derivatives 
of all orders for £ > 0. 

P r o o f . We know in advance that T(£) exists and has the properties 
(i), (ii), .and (iii). By Theorem 1. it is sufficient to prove the existence of 
T'(£) for £ > 0 . For this purpose we consider the integral § A ) dl 
taken along a closed contour PQRSP where PQ, QR, and RS are straight 
line segments and SP is an arc of the curve r . : A = 1 — ^ <5(t) + %i, Q= 1 — coi 
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R—l+wi while the imaginary part of P equals that of Q and the imagi-
nary part of 5 equals that of R. We let <y->oo; using the fact that ||#(<i;.A)|| 
tends uniformly to zero on and to the right of r , one sees that the in-
tegrals along the horizontal line segments PQ and RS tend to zero. That 
the integral along the arc P S of the curve r tends to a limit when w->-co 
follows from the absolute convergence of the resulting integral which in its 
turn follows from the absolute convergence of . the integral (4. 2) discussed 
below. It follows that the integral from Q to R along the vertical line tends 
to a limit in the uniform operator topology when «->oo. But fo rx€©[ /4 ] we 
have (see Theorem 11.7. 1 of [1.]) 

1-HOI 

/ 7 ( D * = Iim - J - r - f e^R{X-A)xdl, 

G) -> 00 ¿>711 J 

whence it follows that 

(4 .1) T(Z) = - ^ r § e * i R ( X ; A ) d X . . r 
Formally the derivative of 7(2) is given by 

(4 .2) . 
• • r 

and all we have to do in order to prove the theorem is to show the absolute 
convergence of this integral for £ > 0 . The norm of this integral is dominated • 
by a constant multiple of 

CO 

(4 .3) • e ^ \ x \ e ~ * m , ) d % . 
-OO 

The range of integration may now be split into two subsets El and En. In 
£ j we shall have d(x) > (6/£) log | t | and \x\ > 1 so that the integral over 

05 
converges as J x ^ d x , while the integral over £ 2 is dominated by the total 

I 
variation of x2 over E2 which is finite by assumption. This completes the proof. 
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