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On the differentiability of'semi-group operators. |

By EINAR HILLE in New Haven, Conn.

1. Let ¥ be a complex (B)-space, A a closed linear operator on X to
itself. whose domain D[A4] is dense in X. Suppose that the operator A/— A
has a bounded inverse R(4; A) for each fixed real positive value of 4 and that

(P ARG A<, >0,

Under these assumptions it is known (see E.HiLLE [1], p. 238 and K. Yosipa
2], p. 15) that A.is the infinitesimal generator of a semi-group € = {T(§)},
£> 0, of linear bounded operators 7(E) with the properties

() TE) TE) = TE+E), §>0, £>0,
(. [TEI<,
(iii) 11m TEx=x, Xx€X.

. Here (m) 1mp11es the further property hm T(-)x—T(w))x for & >0.. Con-

versely, if a semi-group & with the propertles (1) (ii) and (iii) is given,
then it has an infinitesimal generator A which is a linear closed operator
‘whose domain D[A] is dense in X. Further the resolvent R(l A) exists for
NR(4) >0 and v :

(1.2) oHR o+ir; A) | 7,=o—{—ir, o> 0,

For x€ D[A] we have S

1.3 lim,—'[T('.=‘+6)x—T(.E)x}'=T’(E)X%AT(E)X=T(E)AX,

in the sense of strong convergence. ;

. The assumptions on A stated above imply that T(E) is strongly conti-
nuous for £=0 and no further continuity properties; may .be "asserted in
general. Similarly, for £> 0 the operator 7" (£) = AT(¥) is ordinarily an un-
bounded operator whose domain of definition contains D[A] and may coincide
with D[A]. For the higher derivatives we have a similar situation;; the domain
of T™W(E)= A" T(¥)  contains D[A" ] which is dense in X for every n and
N,D[A"] is also dense in X.

_ Thus if we . want to get semi-group operators with stronger continuity
and differentiability properties, we must impose stronger restrictions on A.
" Two sets of such conditions were given in § 12.2 of [1]. The first set give
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continuity of 7°(§) in the uniform operator topology for £ >0, but not for .
£==0, nor the existence of bounded derivatives, while. the second set implies
the existence of derivatives of all orders for &> 0 but not analyticity. In view
of this situation we shall investigate the existence of dernvatlves of semi-group
operators in the present note.

2. We start with’

Theorem 1. If for a positive & the semi-group operator T(§,) maps
X upon a subset of D[A], then T' ()= AT(£) exists as a bounded operator
for £=&,. Moreover, T(")(t) A"T (&) exists as a bounded operator for &€ =né,,
n=1,2,3,. : :

Proof. AT(EO) is a linear closed operator which is defined everywhere
in X, hence it is bounded. Since AT () =AT(&,) T(E—E,) for £> &, it follows
that AT (&) is also bounded. Further, for §>n&, we have

(2. 1) T‘"’(,E)=A"T(§)={AT(%)} , n=1,23,.7.
so that the higher derivatives exist as asserted.

Corollary. If TE)[X] cD[A] for each £> 0, then T(“)'(s) exists as a
bounded operator on X fo X for each £>0 and n=1,2,3,.

Conversely, if 7'(§) exists as a bounded operator for h_:o, then the:
limit in the first member of (1.3) exists for all x when £==§, that is,
T(%) [X¥] = D[A] so that the condition of Theorem 1 is necessary as well as.
sufﬁcnent : '

~ Theorem 2. If T(§) satisfies (n) and if T'(5) exists as a bounded
operator for &>§&, then ||T’ (6)|| is a monotone decreasing function of § in
(“0: °°)
For if 6 >0 then [|7” (a—{—6)||_||T’(§) T(d)]]s||T’(E)|| The same con-
clusion obviously holds for || T &)| in (n&, oo). ~
- In particular, it follows that ||7"(§)|| tends to a finite or infinite limit
when £ decreases to &. If §>0, it may very well happen- that hm 17"

is fnmte In order to see this, we shall introduce a class of operators which.
will be used repeatedly in the following (cf. [1], Theorems 18.2. 1 and 18. 4..1).
Let X = L,(— oo, o), let F(u) be the Fourier transform of f(f)€X% and set .’

-]

Je—go(zt)+1tu F(ll) dll

(2.2) TOU]=
e | 5
_ where ¢(u). is a continuous function whose real part is never negative and
the integral exists in the sense of mean convergence. This defines a semi-
group of linear operators in X and ||T(§)|| is the essential supremum of

- oo
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~ Je~fet)| and hence < 1. Here we choose
o(uy=|u|+iel*!, &>0.

A simple calculation shows that 7" (£) exists as a bounded operator for £«
. but not for & < a. The situation is different for & =0 since 77(0) is bounded
if and only if A is bounded in which case T(§)==exp(£A), that is, T() is
an entire function of § of exponential type.

. We shall now consider the case in which EO—O that is, 7(§) exists
as a bounded operator for £>0. The rate of growth of ||7"(8)|=g(®) as
'£E>0 is of fundamental importance.for the following. We have observed above
that g(§) can stay bounded if and only if A is a bounded operator.” Actually
a sharper result holds. :

Theorem 3. A is bounded and T(§)==exp (sA) zf
(2 3) : hm Sup EHT'(E)H<——

Proof Smce T() has derrvatrves of all orders we may use Taylor s’

theorem obtaining

£
n-1

ea TE= S Eod T<a>+( . f(&—n)"“A“ T(n)dn.

Using (2.1) and (2.3) we see that the remamder tends to zero when 11> oo
~provided O<e<&< a(l -+ —0—) where ¢ equals e trmes the left member of
(2.3). It follows that the Taylor expansjon converges for the_sé- values of &
and represents T'(8).. But the power series"cohverges for |E—e| <-—Z— and in

this circle it defines a semi-group operator ‘which is the analytic continuation
of 7(&). It follows that T(£) is analytic in some neighborhood of the origin
and this requires that 7°(§) is'an entire function so that T(§) = exp (EA) with
a bounded operatdr A.

Corollary. If T()is a proper semz-group operator which has a bounded
derivative for each positive § then o

2.5) ~ lim sup €] 77| 2 -

Thrs is actually the best possible result . of its  kind,. for if we take o
o(u)=|u| in (2.2), that is, if we form the Poisson-Abel transform of the

Fourier integral, then EHT’(E)I[:— for £>0. On the other hand, there is

no upper limit for .the rate of growth of ||T’(§)|| ‘when £-0. In order to see
this, we have merely to choose o(u)=|u|-{ie?® where ¢(u)=o0(u). The
slower u~'¢g(u)~+0 when [u|—>.oo, the faster grows the norm of 77(§) when
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£-+0 and by a suitable ch01ce of @(u) we can achleve that the norm grows
faster than a preassigned function of &.

3. Conditions (i), (ii) and (iii) imply that R(4; A) exists for ¢ >0 and
satisfies (1. 2). Ordinarily no more may be asserted, but if T(§) has deriva-
tives, the resolvent set becomes more extensive.

Theorem 4. Suppose that T(E) is differentiable for £ >0 .and set
@. 1 - NT O =gE)=EGO). ‘

Let d(7) be the distance of the point 1+u from the spectrum of A. For large
values of |t} we have

3.2 6 >

32 ®> 570
where n(7) is the unique root of the equation
(3.3) ' - G(’?)-—-I"l-

Proof. Since

R@A; A)y= z {R(Ao, AN (A —2)"

n=0

converges for |2 —2A|||R(A,; A)|| < 1, it follows that '
0(%) | R(A; AV 21, 4= 14i7,.
Thus (3. 2) is implied by :
(3.4) _ IIR(1+W';A)H<3?7(T)-

- But .
R(2; A) = [e“ T(_)de_ah_f — i+ ],

where n=mn(%) is chosen as indicated above. We note - that G(8) is strictly
decreasing from -}-oo to O when § goes from 0 to oo, so the  equation

(3.3) has a unique root and if {z| is sufficiently large, 5(z) is less than one.
Without restricting the generahty, we may assume that (2 5) holds so that

n(z) is at least O([x| 2) when [z|>oco. For J, we have the trivial estimate
Al £n. An mtegratxon by parts glves

(WA I=v7 MI [! "I"g(’])]

In view of the choxce of n(r) we see that (3. 4) holds for large values of |¢|
and consequently also the desired relation (3. 2).

The resulting estimate is not particularly accurate, mainly on account
of the crude estimate used for /. The latter integral is of the same order

of magnitude as ,
. L .
flrfeez)-ro]e
0 i}
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This suggests that a study of the modulus of continuity of 7°(§) in L(0,»)
might lead to further improvements of the estimate. We shall not pursue this
possibility here, however, The same method as used above leads to

TheoremS. If T(§) is a'tfferenllable for&> 0 and if log g®e¢ L o,1), then

69 B U+ﬂum1+u A <o

Proof. lf logg(§)€L(0, 1) so does log G(£). Wlthout restnctmg the
generality we may suppose that G(£) is absolutely continuous, since otherwise
we may replace G(£) by an absolutely continuous dominant having the same
integrability properties. In view of (3 4) the mtegral in (3.5) 1s dominated
by a constant multiple of

Ho o

fn() ——f %((,;]))dn—JlogG(ﬁ)dn-

Here we have used the fact ~that 7 log G-(r,)»O with n and that G(n,)='1.
This. completes the proof. o . k
The condition logg(§)€L(0, 1) is probably- far too restrictive for the
desired conclusion. In fact there are transformations- of type (2.2) for which
(3.5) holds and merely loglog g(&) €L (0, 1).”For this class of transformations
the condition loglog g(§) €L(0,1) is the best .possible of its kind which will.
“ensure - convergence of (3.5). In order to prove an improved version of
Theorem 5 ‘with log g(§) replaced by loglogO(E) it would be sufficient to
prove that :

@6 - A= Fogay -

4. Theorem 4 suggests that if 6(z) grows sufficiently fast with |z,
then the semi-group operator T'() generated by A might be differentiable.
We shall prove

Theorem 6. If the operator A satisfies the conditions of section 1, if
iR (%;A)|~0 when A-ce in such a manner that the distance of A from the
spectrum of A becomes infinite, and if, for every fixed positive K, the inequa-
lity 6(z) > Klog|v| holds except in a set of intervals over which the total va-
riation of +% is finite, then the operator T(£) generated by A has derivatives
" of all orders for £>0. :

Proof. We know in advance that T(E) exists and has the properties
(i), (ii), and (iii). By Theorem 1. it is sufficient to prove the existence of
. T'(§) for £>0. For this purpose we consider the integral [e*$R(; A) di
taken- along a.closed contour PQRSP where PQ, QR, and RS are stralght
line segments and SPis anarc of thecurve I': A= 1—— d(z)-l— i, Q=1— wi
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R=1+wi while the imaginary part of P equals that of Q and the imagi-
nary part of S equals that of R. We let w - oo; using the fact that || R (4; A)||
tends uniformly to zero on and to the right of I', one sees that the in-
tegrals along the horizontal line segments PQ and.RS tend to zero.. That
the integral along the arc PS of the curve I'" tends to a limit when @-oc
follows from the absolute convergence of the resulting integral which in its
turn follows from the absolute convergence of .the integral (4.2) discussed
below. It follows that the integral from Q to R along the vertical line tends -
to a limit in the uniform operator topology when - oo. But for x € D[A] we
have (see Theorem 11.7.1 of [1])

1+wi

. 1 R
, — - ER(A: 2
| T()x wan; 27”.1 J e R(A; A)xdA,

whence it follows that
1

" — A8 . V'
(4.1 , TE) = T, Ije R(%; A)da.
Formally the derivative of T'(§) is given By
o ey e ] 2¢ .
4.2) o T'(¢)= zm.lje —%R(Z, A)d?,

and all we have to do in order to prove the theorem is to show the absoluté
convergence of this integral for £ > 0. The norm of this integral is dominated
by a constant multiple of

4.3) o ' egjlzle_fgémdz

The range of integration 'may now be split into two subsets E, and E,. In
E, we shall have d(7) > (6/§) log || and |z|> 1 so that the .integral over E,
converges as | v~2ds, while the integral over E, is dominated by the total
1 ' .
variation of 22 over E, which is finite by assumption. This completes the proof.
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