An assertion which is equivalent to the generalized continuum hypothesis.

By G. FODOR in Szeged.

Let E be a set of power $2^{\aleph \alpha}$. Denote by B the set of all subsets of E consisting of two elements only.

We shall prove that the generalized continuum hypothesis H is equivalent to the following assertion:

- A. There exists a (many-to-one) mapping T of B into E such that
- 1) for any $r = \{x, y\} \in B$ we have either Tr = x or Tr = y,
- 2) for any subset E_1 with power $> \aleph_{\alpha}$, the union of the sets $r \in B$ for which $Tr \in E_1$, is equal to E:

$$\bigcup T^{-1}E_1 = E^{-1}$$

Proof. Let the elements of E be arranged in a transfinite sequence of ordinal type φ

(1)
$$x_0, x_1, x_2, \ldots, x_{\omega}, x_{\omega+1}, \ldots, x_{\zeta}, \ldots \qquad (\zeta < \varphi)$$

where φ is the initial ordinal of power $2^{\aleph_{\alpha}}$.

First we shall show that A is a consequence of H. Suppose that H is true. The desired mapping T^* which fulfils the assertion A is defined in the following way. Let, for every $r \in B$, T^*r be equal to the element of r which has a greater subscript in the sequence (1). Consider an arbitrary subset D of power $> \aleph_{\alpha}$ of E. The sum of the elements $r \in B$ for which $T^{*-1}x = r$ for arbitrary element $x = x_{\gamma}$ of D is equal to the set $\{x_{\alpha}\}_{\alpha \leq \gamma}$: $\bigcup T^{*-1}x_{\gamma} = \{x_{\gamma}\}_{\alpha \leq \gamma}$. By the continuum hypothesis H, D is a subsequence of type φ of the sequence (1). It follows that the sum of the elements r of B for which $T^*r \in D$ is equal to E.

Next we prove that H is a consequence of A. Suppose T is a mapping which fulfil the conditions of A. Let x_{η} be a given element of E. We prove that the power of set of those $\{x_{\eta}, x_{\gamma}\} \in B$ for which $\gamma > \eta$ and $T\{x_{\eta}, x_{\gamma}\} = x_{\eta}$, is

¹⁾ For any $F \subset E$, we denote by $\cup T^{-1}F$ the union of all those sets $r(\in B)$ for which $Tr \in F$.

 $\leq \aleph_{\alpha}$. In fact, admitting the contrary the power of the set V of the elements x_{γ} for which $\gamma > \iota_{i}$ and $T\{x_{\gamma}, x_{\gamma}\} = x_{\gamma}$ is greater than \aleph_{α} . It follows then from the property 2) of the mapping T that

$$\cup T^{-1}V = E,$$

i. e., in particular, $\bigcup T^{-1}V \ni x_r$. Thus there exists at least one $r \in B$ such that $Tr \in V$, $Tr = x_z$ say $(z > t_i)$, and $r \ni x_i$. By the property 1) of T we have necessarily $r = \{x_r, x_z\}$. But x_z being an element of V, it follows by the definition of V that $Tr = x_r$, and this contradicts to $Tr = x_z$.

Consider now the section $C = \{x_{\gamma}\}_{\gamma < \omega_{\alpha+1}}$ of the sequence (1). It is evident that for any $\gamma < \omega_{\alpha+1}$ the power of the set of sets $\{x_{\gamma}, x_{\beta}\}$ $(\beta < \gamma)$ for which $T\{x_{\gamma}, x_{\beta}\} = x_{\gamma}$ is $\leq \aleph_{\alpha}$. According to that has been seen above the power of the set of sets $\{x_{\gamma}, x_{\beta}\}$ $(\beta > \gamma)$ for which $T\{x_{\gamma}, x_{\beta}\} = x_{\gamma}$ is $\leq \aleph$ too. As $C = \aleph_{\alpha+1}$ it follows that

$$\mathbf{N}_{\alpha+1} \leq \mathbf{U} T^{-1} C \leq \mathbf{N}_{\alpha+1} \cdot \mathbf{N}_{\alpha}$$

As $\mathbf{N}_{n+1} \cdot \mathbf{N}_n = \mathbf{N}_{n-1}$ we have therefore $\bigcup T^{-1}C = \mathbf{N}_{n-1}$. But, by the condition 2) of T, we have

$$\bigcup T^{-1}C == E.$$

Consequently

$$2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$$

(Received October 1, 1952.)