On weak convergence of the empirical process with random sample size (Correction)

By SÁNDOR CSÖRGŐ in Szeged

Professor P. Révész has pointed out an oversight in the tightness part of the proof of my Theorem 1 [1]; after having applied Doob's identity to the Wiener process there, no m should appear in the integral form, which renders the sum of (1.4) to diverge. The same type of argument works out however by using a recent and very important result of J. KOMLÓS, P. MAJOR and G. TUSNÁDY [3], instead of Kiefer's, which states:

Theorem A [(3]). On a rich enough probability space one can define positive absolute constants A, B, C and, for each n, a Brownian Bridge $\{B_n(x); 0 \le x \le 1\}$ such that

$$P\left\{\sup_{0\leq x\leq 1}\sqrt[n]{n}|Y_n(x)-B_n(x)|\geq A\log n+z\right\}\leq Be^{-Cz}$$

for all real z, where $Y_n(x) = \sqrt{n} (F_n(x) - x)$ is the empirical process.

From now on we assume that the probability space $\{\Omega, \mathcal{B}, P\}$ of the Introduction of [1] is already that of Theorem A here, on which we also assume that a standard Wiener process $\{W(t); 0 \le t < \infty\}$ is also defined.

Going back to the left hand side of (13) in [1], which is bounded above by

$$0+\lim_{\delta\to 0}\lim_{n\to\infty} P\{\max_{u(a-\varrho)\leq m\leq u(b+\varrho)}\sup_{|s-t|<\delta}|Y_m(s)-Y_m(t)|>\varepsilon\},$$

the probability herewith can, in turn, be majorized by

(14)
$$2\sum_{m=\lfloor n(a-\varrho)\rfloor}^{\lfloor n(b+\varrho)\rfloor} P\left\{\sup_{0\leq s\leq 1}\left|Y_m(s)-\frac{W(ms)-sW(m)}{\sqrt{m}}\right|\geq \frac{\varepsilon}{4}\right\}+$$

$$+P\{\max_{n(a-\varrho)\leq m\leq n(b+\varrho)}\sup_{|s-t|<\delta}\left|\frac{W(ms)-sW(m)}{\sqrt{m}}-\frac{W(mt)-tW(m)}{\sqrt{m}}\right|\leq\frac{\varepsilon}{2}\}.$$

376 S. Csörgő: On weak convergence of the empirical process with random sample size

The term in the second row of (14) is \leq

$$P\left\{\max_{\substack{n(a-\varrho)\leq m\leq n(b+\varrho)}}\sup_{|s-t|<\delta}\left|\frac{\mathcal{W}(ms)}{\sqrt{m}}-\frac{\mathcal{W}(mt)}{\sqrt{m}}\right|\geq\frac{\varepsilon}{4}\right\}+\\ +P\left\{\max_{\substack{n(a-\varrho)\leq m\leq n(b+\varrho)}}\frac{\delta}{\sqrt{m}}|\mathcal{W}(m)|\geq\frac{\varepsilon}{4}\right\}.$$

Now the $\lim_{\delta \to 0} \lim_{m \to \infty}$ of the first term of this sum is seen to be zero via Lemma of [2], while that of the second via Kolmogorov's inequality. As to the sum in the first row of (14) we apply Theorem A with $z = \frac{\varepsilon}{8} \sqrt{m}$ and, replacing $\frac{W(ms) - sW(m)}{\sqrt{m}}$ by another Brownian Bridge if necessary, we get, for n large enough, the upper bound

$$2\sum_{m=[n(a-\varrho)]}^{[n(b+\varrho)]} Be^{-C\frac{\vartheta}{8}\sqrt{m}},$$

and also zero in the limit.

References

- S. Csörgő, On weak convergence of the empirical process with random sample size, Acta Sci. Math., 36 (1974), 17–25.
- M. Csörgő and S. Csörgő, On weak convergence of randomly selected partial sums, Acta Sci. Math., 34 (1973), 53-60.
- [3] J. KOMLÓS, P. MAJOR and G. TUSNÁDY, An approximation of partial sums of independent RV's and the sample DF. I, Preprint No. 72/1974 of Math. Inst. Hung. Acad. Sci. To appar in Z. Wahrscheinlichkeitstheorie verw. Geb.

(Received September 10, 1974)