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Embedding theorems and strong approximation '

L. LEINDLER* and A. MEIR

1. Let f(x) be a continuous and 2z-periodic function and let
1) f ~%+ S’ (a, cos nx+b, sin nx) |
n=1

be its Fourier series. We denote by s,=s,(x)=s,(f; x) the n-th partial sum of (1),
the usual supremum norm by || - || and by E,=E,(f) the best approximation of f by
trigonometric polynomials of order at most n. Let w(J) be a nondecreasing continuous
function on the interval [0, 27] baving the properties: w(0)=0, w(5;+d:)=w(d)+
+w(d;) for any 0551552551+52§2n Such a functlon is called a modulus of
continuity.

In order to quote the result of [3], which has initiated our present investigation,
. we define two classes of functions:

He:={f> o(f; 8) = 0(w(d))}

and '
S, = {f: Ilg Alsa—f 17| < ==},

where A={4,} is a monotonic sequence of positive numbers and O<p<<. V. G.
KRrotov and L. LEINDLER [3] proved the following result.

Theorem A. If {4,}isa monotonlc sequence, w is a modulus of continuity and
O<p<oo, then

@ kg" (ki)™ I/P—A [nw(;)]
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implies
3) S, () c He.

Conversely, if there exists a number Q such that 0=0<1 and
@ 1,
then (3) implies (2).

It 1s well known‘ that the classical de la Vallée Poussin means

. .1, -t 2n .
T, =17,(f; x)i=— 2 s(x), n=12,..
n g=p+1

usually approximate the function £, in the sup norm, better than-the partial sums do.
Hence, if in analogy to Sp(l) we consider the class of functions

n0:={f llzx 2 —fl”Il < oo}
we may expect that under reasonable condltlons the following embeddmg relatlons
will hold
e S(l)CV(l)CH“’ _ o
In the present paper we establish that condition (2) does 1mply the 1nclus1on V (A)C
CH® -for all positive p. We further-show that the embedding relation S (A)C V,(2)
also holds if p=1 and the sequence {/,} satisfies the mild restriction

A =K n=12, ..,

(6)

2n

with a fixed positive K (K, K;, Kg, . will denote positive constants, not necessarily
the same at each occurrence). - o '

We were unable to decide whether S (/I)CV (/1) holds when O<p<1 1t is
1éft ‘as an opén problem. .

2. We shall establish the following results. |

Theorem 1. If p=1 and {4} is a rhéhotohié (nondecreasing or ﬁ_oqihq,éqsting)_ :
sequence of positive numbers satisfying (6), then e “ i
M : S(l)CV(l) ' .
holds.

Theorem 2. Let {1,} be a monotonic sequence of positive numbers, furthermore
Iet wbea modulus of contznulty and 0= p=e Then condztlon (2) tmplzes

®) : V,() c He.
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If p=1 and there exists a number Q such that 0= Q<1 and (4) holds, then, con-
versely, (8) implies (2)

3. To prove our theorems we require the following lemmas.

Lemma 1 ([l,p.-‘5'3'4]). Fé‘r anji continuous function f we have the following
inequality :

© . w[f§"%]_§xn-lk§zkm.

Lemma 2. Let a={a,) be a nonincreasing sequence of positive numbers, q=>0
and y=0..Then there exists a positive-constant C=C(a,y; q) such that for every m

a

a 3 qa= - 3 qa, (2]

Proof. We let =min (a,/a,, 1/2g). We define the (possibly finite) sequence of
integers Ny<N;<... as follows. Let N,=0. For i=1 let N; be the smallest integer
such that N;>N;_; and ay = ,BaN : if no such integer exists we set N;=oco.
Now, if N;<n<N;,,, then a,,+1<ﬁa and SO ay, +,ﬁ"1 for r=1,2,..., N;;1—N;.
Therefore, we have for i=0,1, R

(11)
Ny ' .
3 e, = gy 1 (14 g+ +..) 5 29% ay, i = gy, =

n=N;+1

= 2qﬁ "qMay (%"NL‘)V

on using, in the last inequality, the deﬁnmon of the sequence {N }- Now, for any glven
integer m, let j be the largest integer so that N;<m, We theri have, on using (11),
and the fact that f=a/a,,

Ny

Z‘;qna,. §ﬁ‘7a0 (z_:) + 2qﬁ_7 _Z'O qIYiaNi (_a_ZL*—l.] =C Z ( n+1) ,

with C=p"7(1429).
This completes the proof of Lemma 2

~ 4. Proof of Theorem 1. For.p=1 we haye,_by fthe_“powe._rl_§um-ir_1equality”,

P =g 3 et
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Hence

oo

Shl-frs Z0m 3 a—frs

(12 ’

oo

k=1 oo
= 2 ls—f1P 2 (uln) =K 3 Lls—f17
K=2 n=kf2 K=2

where the last inequality follows from (6). Inequality (12) clearly implies (7).

Proof of Theorem 2. First we consider the case p=1. Suppose fEV ,(A).
Then we have for n=1,2,...

e I 2 s} =

N k=ni1

(13) E,(f)=

where A¥=min (1,1, 42,) Iand the last inequality follows from the assumption
J€V,(2). Now, from (13), both if {4,} is incteasing or decreasing we can deduce that

(14 SEL) = K, 34 @),
. . v=1

v=0

- with a suitable K,=0.
Hence, by Lemma 1 and (2), for m=1,2, ...

15 o(f; 47 = K;o@d™),

which proves that fcH®.
We turn now to the case 0<p<1. We have for n=1, 2

' 2n 2n
(16) nE,(f) = ||k=%'L1 ln—f1|| = “k=%:-1 e —f1P - [ee—f 117

It is known [see e.g. [2], p. 58] that [, —f|| =KE,(f) for all k; hence, in particular,
for n+1=k=2n, |t,—f|=KE,(f). Therefore, from (16) we obtain that

nEu(h) = KED)], 2 P

which, since f€V,(A), implies that E,(/)=K.(E,())P(miH~, with Ar=
=min (4,41, A2,). If we rewrite the last inequality as

- (220" = ki,

and use it for n=4%, v=0,1, ..., m, we see that

m . 1/P m



375

Embedding theorems and strong approximation

holds. Applying Lemma 2 now with a,=E}., q=4 and y=1/p, we get that (14) is
satisfied in this case as well. Hence, as before, f satisfies (15) and so fe H®.

This completes the proof of (8) for all positive p.
In order to prove that, under the stated assumptions, (8) implies (2), it is suf-

ficient to note that, because of (7), relation (3) of Theorem A is satisfied; therefore

Theorem A provides the proof of the required assertion.
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