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Decompositions of conipletely bounded niaps

TADASI HURUYA

1. Introduction. Let ¢: A—+~B be a bounded linear map between C *-alge-
bras, and let ¢®id,: AQ M,—~B® M, be the associated maps (n=1, 2, ...), where
M, is the full matrix algebra of order n. The map ¢ is said to be completely positive
if each @®id, is positive, and completely bounded if |¢|.,=sup o®id,||<o;

in this case |l¢|, is called the completely bounded norm of ¢. It is known that a
completely positive map ¢ is completely bounded and | ¢|,=ll¢ll. A linear map
@: A—~B between C*-algebras is said to have a positive (resp. completely positive)
decomposition if ¢ can be written as a linear combination of positive (resp. com=
pletely positive) linear maps.

AC *-algebra A is injective if and only if for any C*-algebra B such that BD A;
there exists a projection of B onto A of norm one [2; Theorem5.3]. WITTSTOCK [15]
proved that every completely bounded map of a unital C*-algebra into an injec-
tive C*-algebra has a completely positive decomposition (see, also; [8]). In [3] we
proved, as a limited converse of Wittstock’s theorem, that given a separable C*-
algebra B, every bounded linear map of any C *-algebra into B has a positive decom-
position if and only if B is finite-dimensional, namely, injective. In this paper, we
show that given a separable unital C*-algebra B, every completely bounded map
of any unital C*-algebra into B has a completely positive decomposition if and
only if B is finite-dimensional, namely, injective. We also prove that if 4 and B are:
separable, infinite-dimensional, unital C*-algebras and A contains a.self-adjoint ele-
ment such that the set of limit points of its spectrum is infinite, then the span of
positive linear maps of 4 into B is nowhere dense in the Banach space of all bounded
linear maps of 4 into B.

Throughout this paper, it is assumed that all C *-algebras are unital. If S is a
compact Hausdorff space, we denote by C(S) the C *-algebra of continuous func-
tions on S. We mean by aN the one-point compactxﬁcatlon of the set N of positive.
integers with the point o at infinity. - : ~
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We remark that some of the results of this paper were announced in [12].
The author would like to thank Professor J. Tomiyama for his interest and
encouragement.

2. Bounded linear maps between commutative C*-algebras. For each nin N let
X,={Xn15 s Xams %> Xn, 0} ADA Y, ={Vy.15 **s Yo, ms ---}- Denote by X the one-
point compactification of the topological sum of the sequence {X,}, of copies
aN; denote by Y the one-point compactification of the sequence {¥,}:> , of copies
N with the point y.. at infinity. The space Y is homeomorphic to aN.

From now on, we use X, Y, X, X, m; X, =, ¥s,m and y.. in the above situation.
We consider linear maps of C(X) into C(Y). Proofs of Lemmas 2 and 3 are based
on an idea due to KAPLAN [4] and Tsur [13].

. We first recall Tsur’s example [13; 1.3.4, Example II).

Lemma 1. Let &: C(X)-C(Y) be the self-adjoint linear map defined by
¢(.f)(yn,m)=f(xn,m)—f(xn,m+l) and 45(f)()’w)=0- Then @ has ho ppﬁtive decom'
position.

Lemma 2. For any positive integer k, there exists a self-adjoint linear map
Y,: C(X)—~C(Y) with |¥,)l=1 satisfying the following properties.

(1) ¥, has a positive decomposition.

(2) If P, is decomposed as the difference of two positive linear maps ¥+, V-,
then |P*||=k/2 and |¥~|=k/2.

Proof. We define the map ¥,: C(X)~C(¥) by
(N0 = A2 (fGn,m) =S Knymsn) if n=k,
Tk(.f)(yn,m) = 0 if n > ka
Y (N0-) =0.

It is easy to check that W, (f) is continuous on ¥ and [|¥,[=1.
(1) We define k positive linear maps ¥;: C(X)—~C(Y) by

Vi(HGuw) =0 if n4m=i,
'pi(f)(yn.m) = (1/2)f(xi,n+m—i) lf n+m = is
V(NG = (1/2)f(%,)-

Since ¥;(f) (31, )=(1/2)f(x; ), we have !ll1+ .+ =%,, and hence ¥, has a
positive decomposition.

(2) For a linear map ¥: C(X)-C(Y), let Y, ) denote the linear functional
on C(X) defined by ¥, m()=¢(f)(¥n,m)- If n=k, then (1/2)é(x; .)=¥{, ., and
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(1/2)6 (s, m+1) =¥, my» Where 5(x) denotes the point measure at x. I_ct e, be the
charactenstlc function of the subset X, of X. Then

1/2 - (1/2)5(xn m)(e ) = T(n m) (en) = q’+(en)(yn m)
1/2 = (1/2)0 (6, m+)(en) = ¥ io,my (€) = ¥7(€n) O, m)-
If j=+, —; we have

112 = Him ¥ (e) Gm) = P(ed 0)-
Therefore,

‘-‘”(1)0’ ) = Z’ Y”(e,.)(ym) k/2,

so that || P+} 2k/2 and ||¥~| =k/2.

Lemma 3. With & as in Lemma 1, if ¢ is a bounded linear map.of C(X) into
C(Y) satisfying lo—®Pl<1/2, then ¢ has no positive decomposition.

Proof. Suppose that ¢ has a positive decomposition. Then the self-adjoint part
7 of ¢ has a positive decomposition t=1" —~. For a linear map ¥: C(X)-~C(Y),
as in Lemma 2, we define the linear functional Y, .., on C(X) by ¥ m(f)=
=y (f)(Pu,m)- Since X is countable, 7/, ., can be written as

Tnym) = x%'(ﬂ"(X)é(x), 0=p(x)ER, j=+, —,
where §(x) denotes the point measure at x. We then have
12> o—9| = [t— P} = |rg,m—Pml =
= ||x%" /3“*(x)5(x)—1%'r B(3)6 (%) =0 (%, )+ 6 (X, m+1)|| =
- = |ﬁ+(xn,m)_ﬁ—(xn, m)_‘1 |'

" Hence (1/2)6 (X, m)=1 m)- Let e, be the characteristic function of the subset X,
of X. Then

1/2 = (1/2)6(xn,m)(en) = Tzv,m) (eu) =_T+(en)(yn,m)’
so that 1/2=1m t*(e,) (¥, m)=7" (€.} (¥~). Therefore
T“(l)-(y.m).% f*(’é; e,)(y..) = k/2

for any positive integer k. This implies the unboundedness of 7+.
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3. The main results. We recall that X and Y are the one-point compactifica-
tions of the topological sums of sequences of copies aN and N, respectively. In order
to extend maps obtained in Section 2 to non-commutative C *-algebras, we construct
completely positive maps with range algebras C(X), C(Y).

Lemma 4. If a separable C*-algebra A contains a self-adjoint element a such
that the set of limit points of the spectrum of a is infinite, then there exist unital com-
pletely positive maps n,: A~C(X) and v,: C(X)~A such that n,ov, is the
identity map on C(X). '

Proof. Let S denote the spectrum of a. Since S is a compact subset of real
numbers, choose a point s.. and a sequence {s,};., of limit points of S such that
3|8 —Sps1|<|S—s,| for all n. For each n take a sequence {s,;};=, of distinct
points of S such that 3|s,—s, ;|<|sw—s,| for all i and lign 8,,=5,. Put S,=
={Sn,15 ++es Sn,m> -++» Say and 5"={.sx,‘,}U(G1 S,). If s€S, we choose a state g, on
A such that g.(f)=f(s) for all fin C(S) because C(S) is the C*-subalgebra gen-
erated by g and 1. We then define the positive linear map = of 4 into the C*-algebra
of all bounded functions on S by n(b)(s)=g,(b) for sin S and b in A. Since 4 is
separable, so is the C*-subalgebra C*(n(4)) generated by n(4). There exists a
compact metric space T with metric d such that C(T)=C*(n(4)). Then § is can-
onically regarded as a subset of T. For each n let ¢, be a limit point of the subset
S, of T and choose a subsequence {§, ;};=; of {s,}i=; such that lim §, ;=t,. If
JEC(S), then

7(N)(t) = lim n(f)E,,) = lim £G,,) = £,

Hence t,#t, if n=m. .

We again choose-a point 7., and a subsequence {fy}re, of {t,};=, such that
3d(te, thns1))<d(tw, tyy). For each n take a subsequence {tymy,i}i21 Of {Sumy,i}iza
such that 3d(tym), tumy, ) <A, tamy)- Put To={tym). 15 ---> thmp,m» --o» tumy} a0d
X ={tm}U("©1 T,). By its construction, X is canonically regarded as the space X.

Let ¢: X=X-~8CS be defined by
Oty d) = thimpis P Uhw) = Shmys  P(t) = 5en

For fin C(S), n(f)(tymy) =SSy and n(f)(t=)=f(s-). The mdp ¢ is one-to-one
and continuous. Then there exists, by [1; Theorem 3.11], a unital positive linear
map v,: C(X)~C(S)SA such that v,(f)oe=f forall fin C(X).

Define the unital positive linear map n,: A~C(X) by =n (b)=n(b)ly, the .
restriction to X=X of n(b). Then n,(f)=foe for all fin C(S). Hence m ov,
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is the identity map on C(X). Both =, and v, are completely positive [10; Chapter IV,
Corollary 3.5].

Lemma 5. If B is a separable, infinite-dimensional C *-algebra, then there exist
unital completely positive maps ng: B—~C(Y) and vg: C(Y)~B such that mgovg
is the identity map on C(Y).

Proof. There exists a self-adjoint element g in B with infinite spectrum S [7].
Denote by C*(a, 1) the C*-subalgebra generated by @ and 1. Then C(S)=C*(g, 1).
Since S is a compact metrizable space, we choose a point s.. and a sequence {s,}:>.,
of distinct points in S with lims,=s.. and {a,};, of C(S) such that g,(s)=1,
0=a,=1 and a,a,=0 for p#gq.

Put S={s,, ..., Sp» ..., S} If €S, we take a state g, on B such that g,(f)=
=f(s) for all fin C(S). We define the unital positive linear map = of B into the
C*-algebra of all bounded functions on § by n(b)(s)=g,(b). Since B is separable,
so is the C*-subalgebra C*(n(B)) generated by n(B). There then exists a compact
metrizable space T such that C(T)=C*(n(B)). Then § is canonically regarded as
a subset of T.

We choose a point sy in 7' and a subsequence {s,,(,,)} >1 Of {s,}5, such that
hm s, =syy. Put Y={Su1y> --+> Suimys ++» Speeoyt- Then ¥ is canonically regarded
as the space Y because ¥ is horneomorphlc to aN.

We define the unital positive linear map nz: B—~C(Y) by ng(b)=n(b)ly, the
restrictionto Y= ¥ of n(b). We also define the unital positive linear map vp: C(¥Y)~
~C(S)SB by

vg(b) = ng [B (Sp(ny) — b (Sh(ee)) ] @n(my + b (Spesy) 1.

Then ngovy is the identity map on C(Y) and both =y and v, are completely pOSlthe
[10; Chapter IV, Corollary 3.5].

Theorem 6. Let A and B be separable, infinite-dimensional C *-algebras. Assume
that A contains a self-adjoint element a such that the set of limit points of the spectrum
of a is infinite. Then

(1) There exists a completely bounded map &: A—~B such that each bounded
linear map ¢: A~B with |@—®&| <1/2 has no positive decomposition.

(2) There exists a self-adjoint linear map ¥: A—B having a completely positive
decomposition such that for any positive decomposition T=%+ ¥~ we have |F+|>
> Plley and |F=) =] Pllcs.

Proof. We use maps @, ¥y, n,, v4, np and vy constructed in Lemmas 1, 2,
4 and 5. :
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(1) We put #=vzodon,. By [6; Lemma 1], & is completely bounded. Then
Inpo@ovy—®] = ngopov~mgodov,| = o~ <1/2. ‘

By Lemma 3; n,,oqoovA has no positive decomposition. If ¢ has a posmve decom-
position, so does nBogoovA This is a contradiction.

(2) We put ¥=vzo¥,0n,. By Lemma 2 and [10; Chapter IV, Corollary 3:5],
¥ is a self-adjoint linear map of 4 into B having a completely positive decomposi-
tion and

1= %)= ||”B°q~’°VA” = llf’llcb = lvgo¥som e = "WAHCB_" P,

where the last equality follows from [6; Lemma 1]. Hence ||P|.,=1. If ¥ has a
positive decomposition P=%+_ ¥~ then ¥, has a positive decomposition ¥,=
=nzoP+ov,—ngo¥P-ov,. By Lemma 2 we have

194 = [rpo @+ ovyl = 42 > [P,
and similarly, 5 5
1] =2 > |¥]e.

Remark 7. Let 4, and B, be C*-algebras. Suppose that there exist unital
completely positive maps 7;: 4, ~C(X), v,: C(X)—4,, 73: By—+~C(Y), v;: C(Y)—B,
such that =,ov; and m,ov, are the identity maps on C(X) and C(Y), respectively.
If we replace 4 and B by A4, and B;, Theorem 6 remains true from the same argument
in its proof (cf. [9; Theorem 2.6]).

~ We recall that the set of self-adjoint elements of an injective C *-algebra is con-
ditionally complete {11; Theorem 7.1]. Hence a separable C*-algebra A4 is injective
if and only if 4 is finite-dimensional.

Corollary 8. Let B be a separable C*-algebra. The following statements are
equivalent;

(1) B is injective;

(2) Every completely bounded map of any C*-algebra into B has a completely
positive decomposition; .

(3) Every linear map ¢ having a completely positive decomposition of any C*-
algebrainto B has a completely positive decomposition such that ¢=@,—@,+i(p;—@,)
with ol =llolles (=1, -+, 4).

Proof. By [15; Satz 4.5] we have (1)=(2) and (1)=(3). Combining the above
remark about injective, separable C *-algebras with Theorem 6, we see that (2)=(1)
and (3)=(1).

In the category of partially ordered Banach spaces, WICKSTEAD [14, Theo-
rem 3.15) obtained a result similar to Corollary 8.
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Addition. After this paper was written, the author discovered an example of a
non-injective, non-separable C *-algebra B such that every completely bounded map
of any C*-algebra into B has a completely positive decomposition [16].
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