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All minimal clones on the three-element set 

By B. CsÂKÀNY 

1. Preliminaries 

A clone on a set M is a set of Unitary operations on M which is closed under 
composition and contains all projections. The clones on M form an algebraic 
lattice; the atoms and the dual atoms of this lattice are called minimal clones and 
maximal clones on M, respectively. A full description of all clones, hence of all 
minimal and maximal clones for \M\ = 2 was given by Post; a complete list of all 
maximal clones was found by Jablonskil for \M | = 3 and by Rosenberg for any 
finite M (see [15], [10], and [17]). Until now, only special examples of minimal 
clones were known for the case |M|>2 . In this paper we determine all minimal 
clones on a three-element M. 

We use the standard universal algebraic terminology [9] except that function 
stands for operation and term function for polynomial. All functions (and hence 
all clones) are defined on the base set 3 = {0, 1, 2}. If / is a function, [ / ] is the 
clone generated by / i.e. the clone of all term functions of the algebra (3; / ) . 
Projections will also be called trivial functions. We use the notation a for the set 
of triplets consisting of distinct entries from 3 and i for 33\<r. 

In what follows we often make use of functions of the following types 1)—4). 
1) Unary functions. Such a function / is denoted by u„, where «=9./(0)4-

+ 3. /( l )+/(2) . 
2) Binary idempotent functions. Such a function with the Cayley table 

0 1 2 
0 0 ns n4 

1 «3 1 n2 

2 n0 2 

will be denoted by b„, where n = If 
3) Majority functions. A ternary function m satisfying m(x, x, y) = m(x, y,x) = 

=m(y,x,x)=x for any x, j € 3 is called a majority function. 
4) Semiprojections. A ternary function s is called a semiprojection if there 

exists a fc€3 such that .s(x0, x1, x2)=xk for arbitrary (x0, xlt x2)ei. 
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A function belonging to one of the above four classes will be referred to as 
a special function. For « > 1 we call an w-ary nontrivial function / sharp if 
/(x0> J = x m a where for all i ^ j , 
A binary function is sharp iff it is idempotent. Majority functions and nontrivial 
semiprojections are sharp ternary. As a trivial consequence of the definition, an 
/i-ary function / is sharp iff all A:-ary functions in [ / ] are trivial provided k < n . 

A sharp ternary function / is uniquely determined by the values / (0 , 0, 1), 
/(0, 1,0),/(0, 1, 1), and all f(q>) with cpia. Call the numbers 

X i f ) = 4./(0, 0, l) + 2./(0, 1, 0)+/(0, 1, 1) 
and 

M = 35./(0, 1, 2)+34 . /(0, 2, l )+3 3 . / ( l , 0, 2)+3 2 . / ( l , 2, 0) + 

+3-/(2, 0, l )+/(2 , 1, 0) 

the characteristic and mantissa of / , and let the pair x ( f ) , ( i ( f ) stand for / . For 
example 4,44 is Pixley's ternary discriminator function ([20], p. 8) and 1,624 is the 
dual discriminator [8] on 3. Observe that 1, t (t=0, ..., 728) are the majority 
functions, and 0, t are the semiprojections with /=0. As these ternary functions 
will play an important role, we also use an alternative notation m, for 1, t and 
st for 0 , / ; e.g. w728 is the majority function on 3 whose value is 2 on each <p€tx. 
Clearly, every majority function or semiprojection / is uniquely determined by the 
sequence of its values on a, called the range of / ; further, the number v(j) of 
distinct entries in the range of / is called the variance of / . 

Let <p be a permutation of 3. To each n-ary function / we assign f , called 
a. conjugate of f defined by f9(x0, ..., xn_1)=(f(x0(p-1, ..., x^cp-1))?. The 
map f ^ f f carries each clone onto the clone "if; in particular [ f Y a n d 

(*) g€L/l implies g*<E[/"]. 

We can permute the variables of / as well: for a permutation of n (={0, ..., n — 1}) 
put ..., x„_i)=/(xo^ ^(n-i)^)- Remark that always hence 
we can write simply Note also that [f^\=[f] for any t¡/. 

The conjugations and permutations of variables generate a permutation group 
Tn of order 3!n! on the set of all n-ary functions on 3. The classes 1)—4) are closed 
with respect to 7\, T2, T3, and T3 respectively. Two functions are said to be 
essentially distinct if they have different arities, or belong to distinct orbits 
of Tn. 

We conclude the introduction with the following immediate observation: 
a nontrivial clone i? is minimal iff i ?= [ / ] for each nontrivial /€'<?. 

2. The list of minimal clones 

First we approximately locate the functions generating minimal clones. 

Proposition. Let be a minimal clone and m the minimum arity of nontrivial 
functions from c8. Then If is m-ary then f is special; moreover 
if f,g£<8 are m-ary then both f and g are of the same type i (lS/^4). 
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Proof. The statement is clear if m = \. If m=2, then each nontrivial binary 
function is sharp and hence idempotent. 

Let First we show that contains a sharp ternary function. Indeed, 
to each sharp at least quaternary / on 3 there exists an i such that / ( x 0 , ..., xn_x) = 
=jc( (/€n) whenever x0, ..., xn_! are not all distinct ([18]; see also the proof of 
Thm. 1, § 33 in [9]). This proves that on 3 each sharp function is at most ternary. 

Let / be a sharp ternary function from <€. We show that [i] contains a non-
trivial semiprojection or a majority function. Indeed, i f / ( 0 = 0 , 3 or 5 then t itself 
is a semiprojection, and if / ( 0 = 1 then t is a majority function. Thus let y(t) (J 
${0,1,3,5}. We show that '/.(g) = 6 for some g£[i]. First if / ( 0 = 2 ( / ( 0 = 7) 
then exchanging the last (first) two variables we obtain r with / ( r )=4 . Thus let 
/ ( 0 =4. Then the characteristic of 

t(t(x, y, z), t(x, y, t(x, z, j)), t(x, z, jO) 

equals 6 (as direct verification or Lemma 1.10 in [20] would show). Let / ( 0 = 6 . 
Write t'(x,y,z) for t(t(x, y, z), y, z). Then x(t')=Q and if /Ve?(=0,44) we 
are done. Now if /¿ (0^44 then t(a,b, c)=d^a for some (a,b,c)£a and there-
fore t'(a,b, c) = t(d,b, c)=d7±a. It remains to consider fi(t)=44. In this case 
t(y, t(z, y, x), z)=0,424 is the required semiprojection. 

We thus have that there is a majority function or a nontrivial semiprojection 
in c6. Taking into account that for g a semiprojection each ternary /6[g] is a semi-
projection and that a similar assertion is valid for majority functions, this proves 
the first part of the proposition. The second part is implied by the following simple 
observation: if i-cj and the functions / and g are of type i) and j) then /ff[g]. 

In virtue of the Proposition our task is to find the different minimal clones 
generated by functions of the four types above. 

1) Unary functions. A nontrivial unary function / generates a minimal clone 
iff either / is a retraction of M (i.e. f o f — f ) or a permutation of prime order 
([1'6], Theorem 4.4.1). The functions u0 and w2 are representatives of the two 
orbits of retractions while u7 and u15 are representatives of the two orbits of prime 
order permutations. The table below shows the minimal clones generated by unary 
functions on 3. The clone standing at the meet of the row starting with [m] and 
column marked by the permutation (p is [u]*. The place of [uY is empty if [«]«• 
is equal to some [u]* which appeared earlier. One may check directly that the clones 
in the table are pairwise distinct. 

Table 1 

(01) (02) (12) (012) (021) 

[«»] [«is! [«as! 
M ["ILL [MS] [ « 3 ] ["4] ["23] 
[ " ? ] [«21] [ " u ] 
[ « 1 5 ] 

2) Binary functions. We proved in [6]: every minimal clone on 3 containing 
an essentially binary operation is a conjugate of exactly one of the following twelve 
clones: [6f] with /€{0, 8, 10, 11, 16, 17, 26, 33, 35, 68, 178, 624}. 

Table 2 (which is constructed on the same principle as Table 1) displays the 
minimal clones generated by binary functions on 3. The clones are pairwise distinct 



230 B. Csákány 

because each [ft] in the table contains no nontrivial binary function other than 
b(x. y) and its dual b(y, x). In other words, the free algebra with two free generators 
in the variety generated by (3; b) consists of no more than four elements; in this 
form, our observation may be found in Berman's paper on three element algebras [2]. 
Thus, it remains to check that Table 2 has no pair of dual functions. 

Table 2 

(01) (02) (12) (012) (021) 

[¿>o] [ ¿ 3 2 4 ] [ 6 ; 2 s ] 

lbs] [¿>36a] [bsol [¿>36] [¿>40] [¿>602] 

[ 6 , o] [¿>28o] [¿>458] [¿>20] [¿>448] [¿>18sl 

[¿111 [¿>286] [ 6 . 1 J 

I M I ^ S S l ] [6296] [¿>47] [¿>205] [¿>1,„] 

[¿>28?] [¿>53] [¿>38] [¿>43] [¿>206] 

[ 6 4 4 9 ] [¿>3,] 
I M ÍÖ122Í ÍÖ557] 

tf>125] [ 6 7 1 ] [¿>42] 1 6 « ] [¿>53o] 

[ 6 6 8 ] [¿>52S] [¿>116] 

[ é n J [ ¿ 2 9 0 ] 

[¿to*] 

The next lemma serves as a tool for handling the remaining two cases. It is 
a direct consequence of the definition of a minimal clone. 

Lemma 1. Let G, H be subsets of the set F of special functions such that 
I. H<=G; 

II. [ i l f l F c G for every g£G; 
III. [g]f]H^0 for every g£G; 
IV. If huh2£H and h^h2 then MIM 

Then {[A]: h£H} is the set of pairwise distinct minimal clones generated by g£G. 

3. Majority functions. For a majority function / generating a minimal clone 
we have two possibilities: 

a) v ( f ) = 3. We prove that up to permutation of variables / is the dual discri-
minator d (i.e. the majority function with d(a,b,c) = c if (a, b, c)da). Following 
[8], a non-empty binary relation C on 3 is called p-rectangular if for every pair 
(i, j ) $ C there are no more than two elements in C which have the form (i, x) 
or (y , j ) . First we show that the subalgebras of (3 ; / ) 2 are ^-rectangular relations 
on 3. In the opposite case, we may suppose without loss of generality (renaming 
the elements and taking C - 1 if necessary) that there is a subalgebra C of (3 ; / ) 2 

such that <0,0>s£C but <0, 1), <0, 2), (l,0)€C. By assumption v(f)=3, the range 
of / contains 0, and we may permute the variables of / so that / ( 2 ,0 , 1)=0. 
Then <0, 0>=</(0, 1, 0),/(2, 0, l )>=/«0 , 2), (1, 0), <0, 1»€C, a contradiction. How-
ever, d preserves the /»-rectangular relations on 3 (see [8]), hence it preserves all 
subalgebras of (3 ;/>2. Now we can apply the following theorem of Baker and 
Pixley ([1], see also [20], Theorem 1.2): if a finite algebra A has a term function 
which is a majority function, then every function preserving all subalgebras of 
A2 is a term function of A. We obtain that d is a term function of (3; / ) , hence 
(/£[/]. On the other hand, [i/] is a minimal clone ([7], Theorem 1), hence /€[*/]. 
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As d is a homogeneous function (i.e. a function preserving all permutations), 
/ must be a homogeneous majority function. Thus / coincides with d up to 
ordering of variables. 

b) v(f)<3. There exists 3 • 26 —3 = 189 majority functions with this property, 
and they belong to 10 distinct orbits of T3. Here we list the representatives having 
the least index for these orbits (the number in brackets indicates the number of 
functions constituting the represented orbit): 

Table 3 

m0(3) w13(18) ot109(6) 
36) /n2s(36) 7n12l)(18) 
18) . m39( 18) 

/ W i o ( 1 8 ) m S 5 ( 1 8 ) 

We prove that the minimal clones generated by majority functions having 
variance less than 3 are exactly [m0], [m324] (m324 = (m0)(01>), [m728] (mV28 = (m0)(02)), 
[m109], [m473] (m 473 — (w109)^02)), and [m5t0] (w510—(w109)^12)); note that the remaining 
functions in the orbit of mW) may be obtained from the listed ones by permutations 
of variables and hence do not generate further clones. 

Apply Lemma 1. Let F be the set of special functions, G the set of majority 
functions with variance <3, and H= {m,\ i =0, 364, 728, 109, 473, 510}. The 
requirement I is fulfilled by definition. As for II, it is a consequence of the follow-
ing lemma which will be used once more later. 

Lemma 2. Let f be a majority function whose range does not contain the element 
~ a (e3). Then the 'same holds for every non-trivial'ternary function in [/]. 

Proof. Clearly, a non-trivial ternary function in [ / ] is a majority function. 
Assume that [ / ] contains a non-trivial ternary function whose range includes 
a, and let g be such a function with a shortest /-term: g(x, y, z) = f(g0(x, y, z), 
gi(x, y, z), g2(x, y, z)). For a suitable <p€cr we have g(<p)=f (g0(<p), gi(fp), gi(<p))=a. 
Thus (g0((p), gi(<?>), g2(<p))i l> a n d hence gi((p) = a for at least two distinct 3. 
By the minimality of g, these gt must be trivial and hence both of them equal 
the same projection. But then g also equals that projection, i.e. g is trivial, a 
contradiction. 

Next we prove III. In virtue of (*) it is enough to show that for each function 
in Table 3 there is an m^H such that Write f=f(x, y, z) for 

/ ( / , / ( 0 1 2 ) , / ( 0 2 i > ) = / ( / ( * , y, A f ( y , z, x)J{z, x, y)). Then 
- m0 = Wj = m4 = m10 = m120 

and 
mio9 = (m13)(01} — m2S = (w39)(01j = ms 5, 

i.e. [w4], [w10],,[m120] and m109i[w13], [m28], [m39], lw85], as required. 
Finally, we have to prove that IV is fulfilled, i.e. that none of the functions in 

H is contained in the clone generated by another one. The unique non-trivial 
permutation of 3 preserved by m105 and m728 is (01), that preserved by m324 
and m510 is (02), and that preserved by m0 and m m is (12). Hence no function 
in one of these three pairs is included in the clone generated by a function appearing 



232 B. Csákány 

in another pair. Furthermore, the ranges of m105 and m723 have no common 
entry; thus, by Lemma 2, m109$[/n728] and m12S^[mim). Concerning the remaining 
pairs we can argue in the same way. 

Now we see that the conclusion of Lemma 1 also holds. This combined with 
the result in the case v ( f ) = 3 allows us to summarize the minimal clones generated 
by majority functions as follows: 

4) Semi-projections. There are 3 • 36=2187 semiprojections, and they belong 
to 74 distinct orbits of Ts. Table 5 shows representatives of these orbits (the 
number of functions in the orbit is added in brackets if it differs from 36). Every 
orbit is represented by its member of characteristic 0 having the least mantissa. 
For the sake of brevity we write down the mantissa only. 

We prove that the semi-projections generating minimal clones are exactly 
j0,58» 2̂6> s7o. 4̂24. a r |d the functions in their orbits. This means that the minimal 
clones generated by semi-projections are exactly those in the following table (which 
is constructed in the usual manner). 

Table 4 

(01) (02) (12) 

lm0] 
[Wios] 
["tod 

[m32i] ["tos] 
[m473] [m510] 

Table 5 

0(9) 21(18) 86 108 150(12) 
1 22 87 109(18) 153 
2 23 88 110 154 
4(18) 25 90 111(18) 156 
5 26(18) 91 113 157 
8(18) 44(3) 92 126 324(18) 
10 49 96 127 325(18) 
11(18) 50(18) 99 128 342 
12 52(18) 100 135 343 
13 76(9) 101 136 345 
14 81 102 138 346(18) 
15(18) 82 103 139(18) 396(6) 
16 83 104(18) 140 424(6) 
17 84 105 141 426(18) 
19(18) 85 106 144 

Table 6 

(01) (02) (12) (012) (021) 

Uoi [̂ 364] U728] 
[•vs] f̂ sGsl ko] [»J [-540] [̂ eaal 
[52S] [£449] [̂ 37] 
[íye] [̂ 634] [̂ 332] [¿434] 
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Denote by S the set of functions appearing in Table 6, and let stand for 
the set of conjugates of S;. 

For the proof, we again apply Lemma 1. Let F be the set of special functions, ' 
G the set of semi-projections, and H=S. Clearly, they fulfil I and II. However, 
the verification of III and IV demands tiresome computations. 

Consider two semi-projections, st, Sj, which are representatives of orbits 
of T3 (i.e. whose indices appear in Table 5). Draw an arrow from st to Sj if 
there exists an ¿¡-term function which is conjugate to s} (i.e. (^j)''€[•?,] for some 
permutation of 3). To prove III, in view of (*) it is sufficient to produce a set of 
arrows such that in the resulting oriented graph, for each non-trivial representative 
s there exists a path which starts from s and ends in one of s0, sa, s26, s76, and 
s424. Such a set of 68 arrows is in the appendix at the end of the paper. 

Our concluding task is to prove that for any different functions sh Sj£ S Sj$ [sj 
is valid. We start with a trivial lemma. 

Lemma 3. Let f g be functions. If there exist a subset K and an element 
k of some direct power 3" such that k belongs to the subalgebra of (3; g)n generated 
by K but does not belong to the subalgebra of (3;/)" generated by K, then 

We also need a special case of this lemma. 

Lemma 3*. Let f , g be as above. If there exists a permutation of M which is 
an automorphism of the algebra (M;/) but not of the algebra (M;g) then g^ [/] 
(cf. the proof of IV for majority functions with variance <3). 

Apply Lemma 3 for the case M = 3, n=2, K—{(0, 2), (1, 0), (2, 1)}. The 
set K may be visualized by means of the figure 

Then the subalgebras of <3; generated by K appear in the following figures 
(i is indicated below the given figure): 

0 

2 

0 0 o V 

•2 1 
0 364 728 8 

368 80 36 40 
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A 
Q 0 Q 
A A A C—Ö c r ~ 

26 449 37 

Q Q 0 

A A /\ 
684 

2 
332 424 

D 
692 

A 
c — ¿ ) 

76 

It can be read: 
a) [s424] 0 5 = {s424}, 
P) if s£S s , [s]nS={.s}, 
7) if i f 5 0 U 5 2 8 , then [5] fl (5"0 U S26 U S7G) = {s}, 
8) if s£S76, then [5] Pi ^ ={.?}, 
£) $ [-̂ Te]! ^ i i [J684]> ̂ s i [S332]-
Observe further that for ^ S o U S ^ U S ^ the algebra (3 ; s,) has a non-

trivial automorphism, while for Sj£Ss the algebra <3; sj) does not. Hence, by 
Lemma 3*, we have 

C) if Si£S0{J S26U S76 and Sj(.Sa, then J j i fo] . 
The transposition (01) is an automorphism of (3; i332) and not an automor-

phism of <3 ;s t) for ¿=0,364,26,449. Hence 
V) i [5332] for / =0, 364, 26, 49. 

Similarly, with the aid of (02) we obtain 
9) Si Stag«] for ¿=0,728,449,37, 

and using (12) there follows 
1) for ¿ = 364,728,26,37. 
Lemma 3 can be used also to prove 
x) for ¿#424, always s424$ [•?(]• 

Indeed, subalgebras of (3; si24)2 must be ^-rectangular, since for a subalgebra 
C and distinct elements x2£3 it is impossible to have ( i , j } $ C and (i, Xj), 
<»'. x2), (y,j)£C because of si2i[(i, xx>, ( y j ) , (i, x2)) = (i,j). Now, for s£S, iV424, 
consider the subset of 32 displayed in the above figure with subscript i, and call 
it Kt. Take this subset for K, st for / , and s424 for g. Then, by its definition, 
Ki is a subalgebra of (3; j,)2 but it is not /^-rectangular (see the figure) and thus 
the subalgebra of (3; s424) generated by Kt contains at least one element k $ K^ 
Lemma 3 then applies and gives x). 

The last step is: 
J449$ [̂ TgIj S26$ [SGSl]) ^37$ [S332]-

We prove the first assertion, the proof of the others being similar. As the range 
of ¿449 does not contain 0, we are done if we show that the range of any function 
in [j76] contains 0. In the contrary case, take the shortest s76-term function t whose 
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range does not contain 0. Let t{x, y, z)=s7e(t0(x, y, z), ix(x, y, z), t2(x, y, zj). Then 
t0(cp) =0 for a suitable q>£a, and hence t(cp)=0, a contradiction. 

a)—A) together mean that for any sh SjdS, Sj $ [J,] whenever i^j. We have 
verified IV of Lemma 1, hence Table 6 really is the list of all minimal clones on 3 
generated by semi-projections. 

3. Summary 

In the preceding part we have proved the following result: 

Theorem. There exist 84 minimal clones on 3 and each of them is a conjugate 
of exactly one of the following 24 clones: 
[foL M . ["?], [«is]; 
[b0l [68]> [¿>io], [¿-ill, [ M , [¿>17], [¿33], [Z>35], [668], [¿>178], [¿>624]; 
[m0], [m109], [w 6 2 4 ]; 

[jO]j [*], [̂ 26]) [fye]» ['̂ 424]* 
The other minimal clones may be read from Tables 1, 2, 4, and 6. The Cayley 

tables of the binary functions in the Theorem may be found in [6]. The ranges of 
the ternary functions appearing in the Theorem may be seen in the following: 

Table 7 

/ / (0 , 1,2) / ( 0 , 2 , 1) / ( 1 , 0 , 2 ) / ( 1 , 2 , 0 ) / ( 2 , 0 , 1) / (2 , 1,0) 

m0 0 0 0 0 0 0 
"Î109 0 1 1 0 0 1 
«621 2 1 2 0 1 0 
So 0 0 0 0 0 0 
Í8 0 0 0 0 2 2 
2̂6 0 0 0 2 2 2 

0 0 2 2 1 1 
si2i 1 2 0 2 0 1 

Several functions occurring here are familiar from earlier research. (3; Z>0) 
and <3; 610) are the two three-element semilattices. They and <3; bu), (3; b2e) 
(left zero semigroups with an outer zero, resp. unit element) are bands satisfying 
xyx=xy identically. Hence the minimality of clones they generate is involved by 
Theorem 4.4.4 in the book of Pöschel and Kaluznin [16]. The minimality of [6178] 
was proved in [12] by Marcenkov, Demetrovics, and Hannák ((3; b17S) is a tourna-
ment; it is known as "the paper-stone-scissors algebra"). The algebra <3; 6624) 
is essentially the affine space [4] over GF(3). 

The functions bs, b±1, 635, and Z>68 appeared in Plonka's paper [13]; the last 
one goes back to Takasaki [19]. Kepka deals with b16 and ¿>17 in [11]. 

As for the ternary functions, m0 is the median function on the chain 1 < 0 < 2 , 
and the minimality of [m0] is a special case of 4.4.5 in [16]. Finally, the minimality 
of [w624] and [i424] was established in [7]. 

Acknowledgements. Thanks are due to Joel Berman, Károly Dévényi, Isidore 
Fleischer, Péter P. Pálfy, László Szabó and Ágnes Szendrei for their interest and com-
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Apology. I am aware that this research may be regarded as something in com-
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Appendix 

Si -Í0 =Sl(il, <>l)(12), *) = y, z), A'lC*, r, y), x) 
Si-*-S0=S2(Sz) (i2)<12), y) 
SÍ-+S(,=SÍ(SÍ, (¿4)(02) , 
Í5~'Í1=J5(Í5, (ís)(02), (̂ >)( L 2 )) 
•SlO =^10(̂ 10 » (Jlo)(12) , y) 

ÍI2~*Í1=Í12((Í12)(12)) 1̂2) Z) 
(íl3)(12) , y) 

Sll-*Sl=Su(Sli, (íl4)(02) , (̂ 14)(01>) 
(J15)<021), (̂ 15)(012)) 

•̂ ÍS ~ ~ t (Siq)(12) , (íl«)(012)) 
íl7~*'í8=íl7(í17> (í17)(12)> (í17)(01)) 

19, (^1»)(12), (̂ lö)<01)) 
J21~*'íl=í2l((í2l)(12), (̂ 2l)(02)> J2l) 
J22~*'̂ 13= 2̂2(í22j (̂ 22)(12)» (̂ 22)(01)) 
2̂3~*"Jll==í23(í33j (̂ 23)(02)» -*) 

í25~*"̂ 23==í25(̂ 25í (̂ 25)(12) > (̂ 25)(02)) 
^ 4 9 = (̂ 4s(̂ 491 (̂ 49)(12), (̂ 49)(02)))ï021ï 

^60—= 5̂0(̂ 50 ) (Í60)(02), y) 
"̂ 62(̂ 52 ) (í5a)(12), (̂ 52)(01)) 

í81"*"í0=í8l(í81> (̂ 8l)<12) 1 y) 
Í82~"Í1=Í82(̂ 82 , (̂ 82)(12) > >") 
^83-,'^0=Í83(í83, (í83)(12) > J") 

í86~*í2=:
8̂6(í86! (í8e)(12)i (í8«)(012)) 

J87"*'í2 = í87((í87)(12) > Í87J ($87)(021)) 
í88"*íl=^88(í88, (í8s)(12) > >0 
Í90~*í0=^90(í90i (̂ 9o)(12) , J*) 

9̂1 ~*S1 = í9l( í91 > (̂ 9l)(12) , y) 
S92~*So =̂ 92(̂ 92, (̂ 92)(12), y) 
•S96 12) , $96 , 
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•Slot) = J 1 0 0 C S ' l 0 0 ) C^10o)(12) ) (> y100)(02)) 

•$101 ~ = " ^ l O l ^ l O l » ( * y i 0 l ) ( 1 2 ) i ( • y 1 0 l ) ( 0 2 i ) 

•̂ 102 ~=,^102(-^102 » (5102)(021) ) C?m)(02) ̂  
•$103 " ^ l f l " ^ 1 0 3 ( ^ 1 0 3 » (•S103)(021J » ( • S 1 0 3 ) ( 0 2 ) ) 

•$104 = ^104(^104 Í (*^104) (12) j y ) 

•y105~*'*S'2— •S'l05(('y105)(12) ) Xt (•yi05)(021)) 
•̂106 = 1̂06(-̂ 106 1 (¿10e)(12)> (̂ X06)(01)) 
•Sl08"'*''?l7=i10sC*i Z> (•y10s)(02)) 
•$109 ~~̂"̂¡ß = ('̂ 109(, 1̂0fl » y> (•yi09)(12)))(12) 

•̂110 = l̂lo(C l̂lo)(12) ï (•y110)(02) Í l̂io) 
•yiiî ioa— l̂iiC n̂x» X, (Jm)(i2)) 
^ U 3 ^ ' ^ 1 6 = : ' S ' l l 3 ( ( ' S 1 1 3 ) ( 1 2 ) » ( l S ' l l 3 ) ( 0 2 ) » ^ l i a ) 

•S126~*"'S'lll=-S,126('ï126) (̂ 126)(021) > (,y126)(02)) 
J l 2 7 ^ í l 0 9 : = ' S ' l 2 7 ( ' S 1 2 7 í (-?127)(012) > 

•̂ 128 ~~=,^128('^128 ) (•S12s)(12) j C$Í28)(012)) 
•S l35~* ' 'S '0 = ' r i35(S l35> (¿135)<021) ) C?13s)<012) ) 

5*136 -*"*5' l35= 'S136(-S ' l36) (•S136)(012) » Z > ) 

^138 = ^138(^138 » ( • y i38)(02) » ( ^ l S S ^ O U ) ) 

' S 139"^ ' ' S 26 = : ' y i 39C- V ) Í139J (*S"l39)(12)) 

5 l 4 0 - * " ' y 2 6 = : ' y l 4 o ( ( ' y X 4 o ) ( 1 2 ) » ( • y l4o) (02) » S l i o ) 

•SÍ41> CSl4l)<18)) 
•̂ 144 ~ = •$144 (̂ 144 » (•S144)(12)i (•y144)(02>) 
•̂ 150 > (•S'l50)(01) ) (lS15o)(12)) 
•yi63-*"-yi35=-SÍ53CSÍ53> (•S'lS3)(02) ï (̂ lSŜ OZl)) 
•̂164 ~ ~ ( ^ 1 5 4 ) ( 0 2 ) > 1̂54) 
•yl68~*''yl05=-yi56('S,156» (•S'l56)(02) » .V) 

•̂ 157, (•yi57)(02)))CQ21) 

•̂ 324 ~ ~ = 3̂24(̂ 324 » x> Z) 
•̂ 325 ~*'̂ lll = 'y325('y325j X> z ) 
3̂42̂ 1̂11 = -y342Cy342 » x> *-) 

Í343->''íl9='f343C-*» S313 5 (i343)(12)) 
S " y 3̂45 » (̂ 345)(12)) 

•y346-*"'y28='y346(-̂ j 3̂46» (•s346)(12)) 
•Î396~>'y424 — $395(5390 > (•s396)(02) > 
•s426-*''ylll=-y428('y426ï x i 
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Grammatical constructions in selective 
substitution grammars 

B y J . GONCZAROWSKI*, H . C . M . KLEIJN**, G . ROZENBERG** 

0. Introduction 

Selective substitution grammars were proposed as a unifying framework for 
"grammatically oriented" formal language theory (see [R2]). Informally speaking, 
a selective substitution grammar consists of a base (this is the underlying grammar 
providing productions) and of a selector (which prescribes the use of productions for 
the rewriting of strings). If one allows the use of arbitrary productions of the form 
b—w, where b is a symbol and w is a word, then one deals with the so-called 
EOS bases. A selector for such a base is a language over a set of symbols consisting 
of letters and their barred (activated) versions. 

- An element y of the selector (called a selector word) prescribes the rewriting 
mode of a word x as follows. 

If y results from x by barring some occurrences in x, then y gives conces-
sion for x to be rewritten; then the rewriting consists of applying productions from 
the base to all and only those occurrences in x that appear barred in y. Thus, 
given a word x, a direct rewriting of x consists of two steps: (i) matching a selector 
word y which gives concession to x and (ii) applying to x productions from the 
base in the fashion prescribed by y. 

This defines the direct derivation relation in a selective substitution grammar and 
(through its transitive and reflexive closure) the derivation relation. A somewhat 
informal but useful way of thinking about selective substitution grammars is to 
think of productions as instructions and of the selector as the program in the word 
processing system that a given selective substitution grammar defines. 

Typical research projects concerning the theory of selective substitution gram-
mars are the following. 

(1) Specifying (language theoretical) properties of selectors which guarantee 
that selective substitution grammars using them represent rewriting of a context-free 
nature. The main theme here is to detect those properties of selectors that allow the 
transmitting of context during the rewriting process (see, e.g., [KR]). 

(2) Discussing the "standard" issue of the difference between sequential and 
parallel rewriting in a uniform framework. This research sheds some additional 
light on the difference between those two classical modes of rewriting as well as it 
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leads to the investigation of new (and natural) classes of rewriting systems (see 
[EMR] and [KR2]). 

(3) The influence of the choice of either various classes of allowable productions 
(under a fixed class of selectors) or various classes of selectors (under a fixed class 
of allowable productions) on the language-generating power of the resulting classes 
of selective substitution grammars (see, e.g., [K.R] and [RW]). 

In this paper we consider the influence of the properties of selectors on the pos-
sibilities of performing several standard grammatical transformations. 

A transformation of a grammar to another one (preserving the generated 
language) is a step done very often in grammatically oriented language theory. 
Such transformations should lead to grammars which are in a convenient form either 
from the "user point of view" (e.g., for parsing) or from the analytical point of view 
(e.g., for proving properties of the generated languages). Once we allow the use 
of all context-free productions in selective substitution grammars, the fact whether 
or not a given grammatical transformation can be performed within a given class 
of selective substitution grammars must depend on (the form of) the selectors available. 
This dependence is the topic of this paper. In particular we investigate a number of 
standard grammatical constructions, such as removing A-productions, removing 
right recursion, removing chain productions, restricting the right-hand sides of pro-
ductions to the length 2 and synchronization. 

We assume the reader to be familiar with the basic formal language theory 
(see, e.g., [S]); as far as the theory of selective substitution grammars is concerned, 
the paper is self-contained. 

1. Basic concepts and definitions 

We assume the reader to be familiar with formal language theory as, e.g., in 
the scope of [S] and [RS]. Some notations need, perhaps, an additional explanation. 
For a word w, denotes its length. X denotes the empty word. For a finite set 
X, # X denotes the cardinality of X. We shall usually identify a singleton set with 
its element. Alphabets are finite nonempty sets of symbols. For a word w, alph(w) 
denotes the set of symbols in w. For a language L, alph (L) = t j alph (w). 

w €L 
Let Li and L2 be languages. Then Lx and L2 are considered equal if 

LxU{1}=L2U{A}. 
Let G be a rewriting system. Then L(G) denotes the language of G. Two 

rewriting systems are equivalent if the languages they generate are equal. 
Let I and be alphabets. We denote the family of total homomorphisms 

from I* into <t>* by HOM{I, <P) and the family of total finite substitutions 
from I* into (subsets of) i>* by FSUB(Z, <Z>). A homomorphism h£HOM{I, <P) 
is a coding if A(a)£ <t> for all a61 . A homomorphism h^HOM ( I , <P) is a weak 
identity if h(a)£{a, X} for all A finite substitution <p£FSUB ( I , <P) is 
a letter-to-letters substitution if (p(a)cz4> for all I. 

A letter monoid (monoid, for short) is a language of the form 0* where 0 is 
an alphabet. A word monoid is a language of the form L* where L is a finite set 
of words. 
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In context-free grammars only non-terminal symbols can be rewritten. Very 
often it is convenient to permit the rewriting of terminal symbols as well. Thus we 
arrive at EOS systems (see, e.g., [KR]). 

Definition 1.1. An EOS system G is a quadruple ( I , h, S, A), where I is the 
alphabet of G, h is a total finite substitution from E* into (nonempty subsets of) 
I* called the substitution of G, A is the start symbol of G and AczS is 
the set of terminal symbols of G. • 

As customary, if a£ Í and wdh(a) then (a, w) is called a production in G. 
Prod (G) denotes the set of all productions in G and Maxr (G)=max {|w|: 

(a, w) 6 Prod (G)}. 
* 

The direct derivation relation in G(=>) and the derivation relation in G(=>-) 
G G 

are straightforward generalizations of the analogous relations for context free gram-
mars. It is easily seen that EOS systems generate precisely the class of context-free 
languages. 

Whenever an EOS system does not contain productions of the form (a, X) (called 
erasing productions or /.-productions) we call it propagating. 

REMARK. (1) Throughout this paper we will assume that the start symbol of 
an EOS system does not occur in any right hand side of a production rule. 

(2) Note that, unlike in context-free grammars, it is required that the substitution 
of an EOS system is a total mapping. However, a finite substitution h' on I* that 
is not total, can be "completed" to a total finite substitution h as follows. Let 
F be a "new" non-terminal symbol, called the failure symbol, for which h{F) = F. 
Then, we let h(a) = F for all those symbols a for which h' is not defined. We shall, 
in fact, use this as a convention throughout this paper: whenever there is no pro-
duction specified for a symbol, say a, we imply the existence of the production 
(a, F). The symbol F will be used for this purpose only. • 

The mode of rewriting in a selective substitution grammar is given by means of 
selectors, see, e.g., [RW] and [KR]. 

Definition 1.2. A selector K is a 3-tuple (Z, L, A), where E is the alphabet 
of K, denoted by Al (K), 1= {a:_a£ X} is the set of activated symbols of K (we 
assume that 1 0 1 = 0 ) . Lcz(Il)S)* is the language of K, denoted by La (AT) 
and A c I is the set of terminal symbols of K, denoted by Term (K). • 

REMARK. An activated symbol is thus denoted by barring the corresponding 
symbol from the alphabet of the selector. The "bar notation" is used for no other 
purpose throughout this paper; thus for an alphabet 0, 0 = {a:a£0} (it is assumed 
that, for all _alphabets I and 0 of non-activated symbols, 001=0). 0 will 
denote 0 ( J 0 . • 

A selector added to an EOS system will form a "rewriting system" (where the 
EOS system provides productions and the selector specifies the mode of rewriting). 
Certain "consistency conditions" are needed to put together a selector and an EOS 
system. 

Definition 1.3. Let G={I, h, S, A) be an EOS system and let K={I', L, A') 
be a selector. G and K fit it J n ( Z " - ¿ T ) = 0 and AT)(S-A)=8. • 
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Definition 1.4. An EOS-based s-grammar H is a pair {G, K), where 

Base (H) = G is an EOS system and 

Sel (H) = K is a selector that fits G. • 

Let H — (G,K> be an EOS-based ¿-grammar where G—(I,h,S,A). Then 
we specify H also in the form H = (Z, h, S, A, K). 

To simplify the notation, we will write Maxr (G) and Prod (G) to denote 
Maxr (Base (G)) and Prod (Base (G)), respectively. 

We will denote the total alphabet of an .s-grammar G (i.e. the union of the 
alphabets of Base (G) and Sel (G)) by Total (G) and the total terminal alphabet of 
G by Teral(G). 

REMARK. In [ R W ] and [ K R ] a selector is just a language and it appears as 
one component in the specification of a selective substitution grammar. For the 
purpose of this paper it is necessary to include more structure in the notion of a selec-
tor, because we want to be able to treat selectors as separate entities independent 
of a base. By requiring additionally to the "fit condition" that the alphabets of the 
base and of the selector are the same (which is a mere technicality) one arrives at 
the EOS based ¿-grammars from [KR]. 

Since in EOS systems productions are available for all symbols (i.e. all symbols 
are active) we allow every symbol in a selector alphabet to be activated. If one 
considers selective substitution grammars with other kinds of bases (e.g. context-
free) one can impose on a selector K={I, L, Á) the condition that L c ( Z L M ) 
should hold, where Aal is the set of active symbols (e.g. A = E\Á), or, equi-
valently, add A as a fourth component to the specification of K. In our study we 
shall be concerned with EOS-based ¿-grammars only. We will thus write "¿-gram-
mar" rather than "EOS-based ¿-grammar". 

We distinguish between non-terminal and terminal symbols in a selector because 
in the sequel various constructions of selectors depend on this distinction. The 
central component of a selector is its language. 

When considering equality of selector languages we will assume that selector 
languages differing by X only are still different. This different treatment of selector 
languages allows us to look more carefully into their structure and in particular 
into their role in controlling rewriting in ¿-grammars. For example, if we would 
not have this special treatment of selector languages, the language obtained from an 
arbitrary selector language La (X) by an inverse weak identity cp that intersperses 
symbols from an alphabet 0 would always include 0*. This may drastically 
change (as compared to the obvious intention) the structure of rewriting in an 
¿-grammar where the selector with the language <p(La (K)) would be used. • 

Several kinds of homomorphic mappings will be particularly useful throughout 
the paper. They are defined now. 

(1) Let I and 0 be alphabets. Then 
— idenr is the coding in HOM (£, I ) defined by 

idenz (a)=idenx (a)=a for all a€.I. 
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— P r e s i ,e is the weak identity in HOM (1,0) defined by 

, . f a if a £ 0 pres I (e(a) = ^ ^ 

— eraseii e is the weak identity in HOM ( I , Z — 0) defined by 
erasex > e(a)=pres^ I- e(a) for all a£Z. 

Whenever I is clear from the context we will write iden, prese and erase« rather 
than iden i ; presj>e and erasej e , respectively. 

(2) Let G={I,h, S, A, K) be an j-grammar. Let Ix be the set {ia: a£Z} 
such that I x nProd(G)=0. Then 

— lhbar is the homomorphism in HOM (lx U Prod (G), I ) defined by 
lhbar ((a, w)) = a for all (a, w)€Prod(G) and 
lhbar ( O —a for all ifl€li;. 

— lhs and rhs are the homomorphisms in HOM (Ij U Prod (G), I ) defined by 
lhs (7t)=iden (lhbar (re)) for all TtSl^U Prod (G), 
rhs ((a, w)) = w for all (a, w) 6 Prod (G) and 
rhs( i a)=a for all * 

Definition 1.5. Let G=(I,h, S, A, K) be an ¿-grammar. 
— A derivation of length 1 (in G) is a word w^I^UProd (G))* with 

lhbar (w)€La (K), and such that lhs (w)^ lhbar (w). 
— For x, y£E* we say that x directly derives y (in G) if there exists a deri-

vation w of length 1 with lhs (vv) = x and . rhs (w) = y; we write then x=>y. 
G 

— A. derivation of length i > 1 (in G) is a sequence (n^, w,) of words from 
" (ijUProd (G))* such that '(»%,.. . , Wj-j) is a derivation of length z —1, is 

a derivation of length 1 and rhs (w i_1)=lhs (wt). For x,y£Z* and 1 we say 
that x derives y in i steps (in G) if there is a derivation of length i, (w1; ..., W;), 
where lhs(w1)=x and rhs (iv;) = y; we write then x=> y. 

G 
— A derivation (in G) is a derivation of length i for some i s 1; the length 

of a derivation D is denoted by |D|. 
If D = (h'J, ..., w), i s 1, is a derivation then D is a derivation of rhs(vf() from 
lhs (Wi) {in G). 

For x, y£Z* we say that x properly derives y (in G) if there is a derivation 
of y from x; we write then x=>y. G 

* . + Let =>• be the reflexive closure of =•. We say that x derives y (in G) for 
G G 

* 
x, y£ I* if x ==>• y. 

We write x=>y whenever x=y. G 
— Let D = (wlt ..., w j be a derivation. The barred trace of D (Btrace (Z))) 

is the sequence of words (lhbar (wj), ..., lhbar (w,)). The trace of D (Trace (Z))) 
is the sequence of words (lhs (wj, ..., lhs (w,), rhs (vv,)). If lhs (n^) = S then the 
elements of Trace (£>) are called sentential forms (of G). 

* 
— The language of G is the set L(G) = {w£A*\ S=> w). • 

2 Acta Cybernetica VI/3 
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The following example will illustrate the above notions. 

Example 1.1. Let G = ({A, B, C, a, b, c, S}, h, S, {a, b, c}, K>, where 

K = ({A, B, C, a, b, c, S}, S(jAa*Bb*Cc*y {a, b, c}> 

and h is defined by 

h(A) = {Aa, a}, h(B) = {Bb, b}, h(C) = {Cc, c} and h(S) = ABC. 

h(d) = d, for all d£{a, b, c}. 

Table 1.1 shows a derivation, its barred trace and its trace. 

Table LI 

Derivation Btrace Trace 

(S, ABC) S 
(A, Aa)(B, Bb)(C, Cc) ABC ABC 
(A, Aa)ia(B, Bb)ib(C, Cc)ic AaBbCc AaBbCc 
{A, Aa)iaia(B, Bb)ibib(C, Cc)icic AaaBbbCcc AaaBbbCcc 

AaaaBbbbCccc 

Obviously ~L(G)={a"bncn: «>0}. • 
Following [KR] various features common to different types of "context-

independent" rewriting are formalized and imposed as restrictions on selectors. 

Definition 1.6- Let K=(E, L, A) be a selector. 
K is active bar-free (abf) if, for all v,w£L* and for all a£Z, whenever 

vaw^L then vaw£L. 
K is context bar-free (cbf) if, for all v, w^I* and for all a£Z, whenever 

vaw£L then vaw£L. 
K is bar-free (bf) if K is abf and cbf. • 

Definition 1.7. Let K — {I, L, A) be a selector. 
K is active_symbol-free (asf) if, for all v, vv£f* and for all a£l, whenever 

vawdL then vXwcL. 
K is context symbol-free (csf) if, for all v, and for all a£Z, whenever 

vaw£L then vIwaL. 
K is symbol-free (sf) if K is asf and csf. • 

Definition 1.8. Let K = (Z, L, A) be a selector and 0 c £ . 
K is active 0-interspersed(0-ai) if, for all v, w^S* and for all a£Z, whenever 

vaw£L then v0*a0*w<zL. 
K is context 0-interspersed (0-ci) if, for all v, and for all a£l, when-

ever vawZL then v0*a0*w<zL. 
K is 0-interspersed (0-i) if K is 0-ai and 0-ci. • 

Definition 1.9. Let K=(Z, L, A) be a selector and 0 c l . 
K is 0-universal (0-u) if, for all w>€0*, there is a v£L, v^w, such that 

iden (v) = w. 
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K is 0-occurrence-universal (0-ou) if, for all w2£0* and for all 
there exist v1,v2(i&* such that v1av2£L where iden(t;1) = w1 and iden (u2) = w2. • 

Definition 1.10. Let K = (Z, L, A) be a selector and 0<z%. 
K is ©-erasing (&-e) if, for all w£L, erasee (w)£L. • 
If 0 is an alphabet and G is an s-grammar, then G is abf (cbf, bf, asf, csf, sf, 

0-ai, 0-ci, 0-i, 0-e) if Sel (G) is abf (cbf, bf, asf, csf, sf, 0-ai, 0-ci, 0-i, 0-e, 
respectively). If 0 is the alphabet of Base (G) we omit 0 as a prefix in the above 
acronyms. Moreover we say that G is universal (u), respectively occurrence universal 
(ou), whenever Sel (G) is 0-u, respectively 0-ou, where 0 is the alphabet of 
Base (G). 

The definitions given above correspond to those given in [KR] (with the ex-
ception of Definition 1.10, which does not appear there), for the case that all symbols 
are active. However, one should take into consideration that in [KR] the above 
notions are defined directly for ¿-grammars and hence subject to the assumption 
that the alphabet of the base and the not specified alphabet of the selector are the same. 

The traditionally considered grammar and language families, as seen from the 
point of view of the theory of ¿-grammars, are defined using a fixed selector (if the 
alphabet is fixed); grammars differ only by the set of productions they use. In this 
way one talks, e.g., about all context-free grammars or all EOS systems (where the 
selector language is of the form Z*(Z —A)Z* or Z*ZZ*, Respectively), or about 
all EOL systems (where the selector language is of the form f + ) . To define a family 
of selectors based on (the structure of) one selector only we proceed as follows. 

Definition 1.11. A family of selectors Sf is a selector scheme if 
. _ . . (a)-Sf contains a selector K0 of the form {{a}, L0, {a}). 

(b) For all alphabets Z and Acz I there is exactly one selector K in Sf 
with Al = r and Term (K) = A it is also required that La (K) — (p¡;(L¿), 
where (p^FSUB (a, Z) is defined by 

<Ps(a) == 2 a r |d (pz (a) = I. • 
It is straightforward to see that if Sf is a selector scheme and K^Sf then 

K is sf. Moreover, for every sf selector K there exists exactly one selector scheme 
Sf with K£Sf. As a matter of fact a selector scheme represents the selector of 
a pattern grammar (see [KR]). 

Note that whenever a selector scheme Sf contains an abf (cbf, bf) selector 
then all the selectors in Sf are abf (cbf, bf, respectively). Hence we can speak 
of an abf (cbf, bf) selector scheme. . 

In the sequel we will attempt to investigate properties of selectors that allow 
us to perform various operations on ¿-grammars. We will consider two approaches 
in parallel (whenever possible): properties of general selector families on one hand 
and properties of selector schemes (or selectors) on the other hand. Although we 
distinguish between non-terminal and terminal symbols in an individual selector 
for the purpose of this paper it suffices to assume that every family X of selectors 
that we consider satisfies the following condition: 

If (Z,L, A)£JÍT, then, for every 0 c Z, (Z, L, . 
The notion of closure for language families is extended to families of selectors 

in the following way. 

2* 
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Definition 1.12. Let jf be a family of selectors and let r be an n-ary mapping 
on languages, n s l . We say that Ji is closed under z if, for every ..., 
there is a selector such that 

A1 (K) = iden (alph (T ((AL (K,))*, ..., (A1 (#„))*))) and 

The word "universal" has been used in the theory of ¿-grammars to express 
different phenomena (see, e.g., [RW] and [KR]). To avoid confusion we use the 
following notion to describe "universality with respect to generative power". 

Definition 1.13. Let SC be a family of languages. An EOS system G= 
= {I,h, S, A) is an s-generator of ££ (with respect to A) if for all with 
La A* there exists a selector K that fits G such that 

2. The existence of normal forms 

Let ^ be a family of grammars. If '€ is a set of conditions and if the sub-
class <3<e (consisting of all those grammars of that satisfy (£) still generates 
all the languages generated by grammars from <$ then we say that (€ constitutes 
a normal form of 

Investigation of normal forms for various classes of grammars constitutes 
a major research topic in formal language theory. In this section we investigate the 
existence of various normal forms in the general framework of ¿-grammars. 

The basic conditions (imposed on ¿-grammars) that we will consider in this 
paper are defined as follows. 

Definition 2.1. Let G=(E, h, S, A, K) be an ¿-grammar. 
— A symbol a^I is versatile (in G) if there is a production (a, w)(i Prod (G) 

with w^a. Let a^S. A rule (a, w) is a chain in G if w consists of a single 
versatile letter. 

— G is chain-free if either there are no chains in G or every chain in G is 
of the form (S, a), where a£A* is such that, for all w£h(a), w contains only non-
versatile symbols and w£A* implies w=a. 

— G is synchronized if, for all a£A, a ̂  =• w implies that w is not in A*. 
— G is binary if, for all a£Z, w^hia) implies that |vv| 
— G is propagating if for all a£I — S, X is not in h(a). 
— G is right-recursive (left-recursive) if there exists a versatile symbol a and 

a word vv£ Z*. such that a =>• wa(a => aw, respectively). • 
Base(G) v Base(G) 

R E M A R K . ( 1 ) The above definition adopts the notions of chain-freeness, 
synchronization, etc. as used in the theory of context-free grammars and ETOL 
systems to the framework of ¿-grammars. For example the classical notion of chain-
freeness is modified by the use of versatile symbols to account for the fact that ter-
minal symbols can also be rewritten. 
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(2) We will use the above terminology (chain-freeness, synchronization, etc.) 
also for ETOL systems. Although ETOL systems are not ¿-grammars this should 
not lead to confusion. • 

In the rest of this section we will demonstrate that the restrictions discussed 
above on the form of ¿-grammars, even when combined with additional restrictions 
on the properties of selectors used, do not affect the language-generating power 
(of the whole class of ¿-grammars). 

The following results are generalized versions of theorems in [KR]. The proofs 
are similar. However, basic constructions in the proofs had to be modified. In the 
proofs below we provide such basic constructions, and leave to the reader the (not 
difficult) task of proving that these constructions yield ¿-grammars with properties 
as required in the statement of the theorems in question. 

Theorem 2.1. Every language L can be generated by a chain-free synchronized 
propagating non-left-recursive (or non-right-recursive) binary and bf s-grammar. 

Proof Let LCA*. We define G—(Z, h, S, A, K) as follows: 

Z={S, T, F}\JA\J0%, where 02={[a,b]\a,b<iA} 

such that A,{S,T,F) and 02 are pairwise disjoint, h is defined by 

h(S)={aT: a£A}\J{w<iL: |w| ^ 2}U{a[b, c]: a, b, c£A}. 

h(T) — {aT: a£A}U {a[b, c]: a,b,c£A}. 

h([a, b]) = ab and 

h(a) = F for all a£A\J{F). 

K=(Z, Z*(SUT)U U L*laM[^b]A), where 
A,B£A 

Z.[0,6] = {w£A*: iden(wa&)CL} for all a, b£A. 

It is easily seen that L=L(G) and, moreover, G is chain-free, synchronized, pro-
pagating, non-left-recursive, bf and binary. • 

Theorem 2.1 yields immediately to the following result. 

Corollary 2.1. For every s-grammar there is an equivalent bf s-grammar that 
is chain-free, synchronized, propagating, non-left-recursive (or non-right-recursive) 
and binary. 

Theorem 2.2. Every language L can be generated by a chain-free synchronized 
propagating non-left-recursive (or non-right-recursive) binary abf, asf and u s-grammar. 

Proof. Let L^A*. We define G=(Z, h, S, A, K) as follows. 

Z = {S, T, F}UziUS 4U0 4 , where 

Si = {{a, b, c, d): a, b, c, d£A}, 

= b, c, d]: a, b, c, d£A} 
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and A, {5, T, F}, S4 and 0 4 are pairwise disjoint, h is defined by 

h(S)= {w£L: |w| == 2}V{aT: a£A}\J 

{a[b, c, b, c]: abc£L}U {(a, b, c, d)[a, b, c, d]: a, b, c, A}, 

h(T) = {aT: a£A}ll{(a, b, c, d)[a, b, c, d]: a, b, c, d£A}. 

h({a, b, c, d)) = ab and h([a, b, c, d\) = cd for all a, b, c, d£A, and 

h(a) = F for all a£A{J{F} 

K= (Z, Z*Z{J{a1...ak-ib[ak_3,ak_2,ak_1,ak\: a^.M^L, k S 4 and b£Z}, A). 

Clearly G is chain-free, synchronized, propagating, non-left-recursive, binary, 
abf, asf and u. It can easily be seen from the construction that L~L(G). o 

Corollary 2.2. For every s-grammar there is an equivalent abf, asf, and u s-
grammar that is chain-free, synchronized, propagating, non-left-recursive (or non-
right-recursive) and binary. 

Theorem 2.3. Every language L can be generated by a chain-free synchronized 
propagating non-left-recursive (or non-right-recursive) binary abf and ai s-grammar. 

Proof. Let L^A*. We define G=(Z, h, S, A, K) as follows. 

Z = {S, T, i?}U/dU0 2U0 4 , where 

0 2 = {[a, b]: a, b(=A}, 

0 4 = {[a, b, c, d]: a, b, c, d£A} 

and A, {5, T, F}, 0 2 and 0 4 are pairwise disjoint, h is defined by 

h(S) = {w£L: |w| ^ 2}U {aT: a£,d}U 

U {[a,b,a,b]c: abc£L}l) {[a, b, c, d][c, d\: a,b,c,d£A}, 

h(T) = {aT: a<iA}U {[a, b, c, d\[c, d\: a, b, c, d£A}, 

h([a, b, c, d]) = h([a, b]) = ab for all a, b, c, d£A and 

h(a) = F for all a£dU{F}. 

i = { l , r { i r } r u u LlaMZ*[^b]Z* U U Z*[Z~bXd]Z\ A), where 
a, bed a,b,c,ded 

L[a ,b] = K - - - a n - 4 [ « n - 3 > a, b]: a1...an_2ab£L, n S 4}. 

It is easily seen that L=L(G) and, moreover, G is chain-free, synchronized, pro-
pagating, non-left-recursive, binary, abf and ai. • 

Corollary 2.3. For every s-grammar there is an equivalent abf and ai s-grammar 
that is chain-free, synchronized, propagating, non-left-recursive (non-right-recursive) 
and binary. 
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Theorem 2.4. Every language L can be generated by a chain-free synchronized 
propagating non-left-recursive (non-right-recursive) binary cbf, csf, ci and ou s-gram-
mar. 

Proof Let L c j * . Let G=(Z, h, S, A, K), where 

Z = {S, T, F } L M U 0 2 U 0 3 U 0 4 U S 2 , where 

0 2 = {[a, b]: a, b£A}, 

0 3 = {[a, b, c]: a, b, c£A}, 

@4 — {[^J b, c, d]\ a, b, c, d£A}, 

S2 = {(a, b>: a, b£A} 

and A, {S, T, F}, 0 2 , 0 3 , 0 4 and 3 2 are pairwise disjoint, h is defined by 

h(S) = {w£L: |w| ^ 2}U {[a, b]T: a, b£A}U 
U{a<6, c): abc£L}U{(a, b)(c, d):abcd£L}, 

h(T) = {[a, b]T: a, biA}U{[a, b, c, d]d: a, b, c, d£A}U 
U {[a, b, c]c: a, b, c£A}, 

h([a, b, c, d]) = (a, b)c for all a, b, c, d£A, 
h([a, b, c]) = h({a, b)) = ab for all a, b, c£A, 
h([a, b]) = ab for all a, b£A and 

h(a) = F for all a^AV){F}. 

K= (Z,I+l)S*T\jl7z*\jZ*{(a, b): a, b£A}Z*,A), where 

L' = {[a1; a^...[a2k-5, a2k_i][a2k-3, a2k_2, a2k_1, a2)J: a^.M^L, k fe 3}U 

U{[a^aJ- . - ta^-s , a2*-4][a2t_3, a2k_2, a ^ - J : a1...a2k_1eL, k ^ 3}. 
Clearly G is chain-free, synchronized, propagating, non-left-recursive, binary, 
cbf, csf, ci and ou. It can easily be seen from the construction that _L=L(G). • 

Corollary 2.4. For every s-grammar there is an equivalent cbf, csf, ci and ou 
s-grammar that is chain-free, synchronized, propagating, non-left-recursive (non-
right-recursive) and binary. 

Theorem 2.5. Every language L can be generated by a chain-free synchronized 
propagating non-left-recursive (or non-right-recursive) binary csf and i grammar. 

Proof. Let L<=A+. We define G = (Z, h, S, A, K) as follows. 

Z= {S, 7 \ F } L M U 0 2 U 0 3 U S 2 , where 
0 2 = {[a, b]: a, be A}, 
0 3 = {[a, b, c]: a, b, c£A}, 
E2 = {(a, h): a, beA} 
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and A, {S, T, F}, 0 2 , 0 3 and 32 are pairwise disjoint, h is defined by 
h(S) = {w£L: |w| ^ 2}U{<a, b)T: a, b€A}U 

U {(a, b)c: abc<=L}U{(a, b)[c, d]: a, b, c, d£A), 
h(T) = {[a, b]T: a, bZA}(J{[a, b][c, d]: a, b, c, d£A}U 

U {[a, b,c]c: a, b, c£A), 
h((a, b» = h([a, b}) = h([a, b, c]) = ab for all a, b, c£A and 
h(d) = F for all a€-dU{F}. 

K = (Z, Z * U ip (I7), A), where 

L' = «ax, a2)[a3, ad...^^, a j : ct^.M^L, n s 2}(J 

U {(fli, a2)[a3, flj—ffla,-!, a^, a ^ + J : a^.M^+^L, n S 2}U 
I I //— 1A. -c Al \\u9 t//. UUt^ , JU1 SwiAlW t-C^1/ 

and ip is the substitution on Z* defined by ij/(a) = Z*aZ* for all a£Z. It is easily 
seen that L=L(G) and, moreover, G is chain-free, synchronized, propagating, 
non-left-recursive, binary, csf and i. • 

Corollary 2.5. For every s-grammar there is an equivalent csf ^and i s-grammar 
that is chain-free, synchronized, propagating, non-left-recursive (or non-right-recursive) 
and binary. v' 

Theorem 2.6. Every language L can be generated by a chain-free synchronized 
propagating non-left-recursive (or non-right-recursive) binary abf, ci and u s-
grammar. 

Proof. Let LcA*. We define G=(Z, h, S, A, K) as follows. 
Z = {S,T,F}\JA\J02U 0 3 U S 2 , where 

02 = {[a, b]: a, b£A}, 

0 3 = {[a, b, c]: a, b, 
32 - {{a, b)i a, b£A} 

and A, {5, T, F}, 0 2 , 0 3 and S2 are pairwise disjoint, h is defined by 
h(S) = {W€L: |W| S 2}U {[a, b]T: a, b£A}U 

U {a[b, c]: abceL}D{[a, b][c, d]: a, b, c, d£A}U 
U {[a, b] [c, d, e]: a, b, c, d, A}, 

h(T) = {[a, b]T: a, b<iA}U 
U {[a, b][c, d]: a, b, c, d£A}U{[a, b][c, d, e]: a, b, c, d, e£A}, 
h([a,b, c]) = a(b, c) for all a, b, c£A, 
ft ((a, b)) = h([a, b]) = ab for all a, be A, 
h(a) = F for all a e d U ^ } . 
K= {Z, Z*ZVil/(u),A) 
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where ip is the substitution on Z* defined by ¡j/(a) = {a}UZ*aZ* for all a£Z and 

L' = {[ai,ua2]...[a2t-i> «aJ: ^...a^L}^ 

U{[a1; a j . . . ^ . ! , a2k, a2k+J: a1...a2it+16Z,}. 

Clearly G is chain-free, synchronized, propagating, non-left-recursive, binary, 
abf, ci and u. It can easily be seen from the construction that L=L(G). • 

Corollary 2.6. For every s-grammar there is an equivalent abf, ci and u s-
grammar that is chain-free, synchronized, non-left-recursive (or non-right-recursive) 
and binary. 

We observe that the construction used in the proof of Theorem 2.1 yields a rather 
strong normal form for ¿-generators. 

Corollary 2.7. Let be the family of all languages containing no word of length 
less than 3. Then there is an EOS grammar that is chain-free, synchronized, propagating, 
non-left-recursive (or non-right-recursive) and binary, that is an s-generator of J5?0. 

REMARK. The common feature of all the constructions used in1 this section to 
obtain normal forms is "language-dependency" rather than "grammar-dependency". 
That is, to demonstrate that ¿-grammars satisfying a particular set of conditions can 
generate a language, we would use this language explicitly in constructing a selector; 
this is done without any knowledge whatsoever about the way that this language is 
grammatically generated. Thus, in general, our results are per se non-effective. From 
the grammatical point of view it is certainly more desirable to obtain normal forms 
starting with a language given through an ¿-grammar where, moreover, the resulting 
¿-grammar has a selector of the same kind (belonging to the same selector family) 
as the selector of the originally given ¿-grammar. The rest of this paper will consider 
the latter approach. • 

3. ETOL systems and CS grammars — the ¿-grammars point of view 

In the sequel we will investigate properties of (families of) selectors which allow 
one to perform various operations on ¿-grammars using these selectors. In this 
section we look at ETOL systems and the family of context-sensitive grammars 
from the point of view of ¿-grammars. The results of this section allow us to provide 
some applications of the results obtained in the sequel; they also give us a sort of 
guideline as to which operations on families of selectors (not) to consider. 

We shall specify an ETOL system as a quadruple {Z, J f , S, A), where Z, S 
and A are like in EOS systems and ffl is a finite set {hx, ..., FSUB(Z, Z) 
(of tables) such that and hl(d)P[Z*SZ* = 0 for all a£Z and 1 
(This is a normal form for ETOL systems, as, e.g., shown in [RS].) 

Whenever an ETOL system is propagating we call it an EPTOL system. 
Whenever for an ETOL system G=(!,#?, S, A) the set Jf is a singleton, 

we call G an EOL system. 

Theorem 3.1. Let G=(Z, h, S, A, K) be an s-grammar, where La (K) is 
a union of nSl letter monoids. Then L(G) can be generated by an ETOL system 
with n tables. 
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h,(a) = 

Proof. We shall construct an ETOL system H that is equivalent to G. Let 

La (K) be of the form U ( 0 , U #,.)*. Let H be the ETOL system <2:U{F}, 
i = 1 

{h1, ...,h„}, S, A), where F is the failure symbol and hi is defined as follows, 
for l ^ z ^ n : 

h(a) if a^Qi-Qi 
a if a£0i-<Pi 

h(a)Ua if a£0iOfy 
„ F otherwise. 

It is easy to see that there is a derivation in G if and only if there is a corresponding 
derivation in H,_ because whenever a sentential form is rewritten in G using 
a word in (0,- U (Pi)* it can be rewritten in H in the same way using and vice 
versa. • 

Corollary 3.1. A language L can be generated by an ETOL system with n tables 
if and only if it can be generated by an s-grammar with a selector that is the union of 
n letter monoids. 

Proof. The if direction follows from Theorem 3.1. The only z/direction was 
shown in [EMR], where it was proved that every language that can be generated 
by an ETOL system with n tables can be generated by an n SC-grammar, i.e. 

n 
an ¿-grammar with a selector the language of which is of the form IJ 4>*. • 

¡=1 
A context-sensitive grammar G will be specified in Penttonen Normal Form. 

Hence G is a quadruple (Z, P, S, A) where Z, S and A are as in EOS systems 
and P is a set of productions of the form (b, a) or (b, cd) or (be, bd), where 
b,c,d£Z—A and a£A. 

That grammars in this form generate all (and only) context-sensitive languages 
was shown in [P]. 

Theorem 3.2. For every context-sensitive language L there is a propagating 
s-grammar G such that L (G)=L and La(Sel(G)) is a word monoid. 

Proof. Let H = (Z', P, S, A) be a context-sensitive grammar for L. Let each 
production in P be numbered distinctly, by a number between 1 and in an 
arbitrary manner. Let (^¡6,-, ^¡w,) be the i'th production in P, where 
A£{Z'-A)\J{X},b£Z'-A and w£l'*. 

Let G be the ¿-grammar {Z, h, S, A, K) where 
Z = Z'U {a<j): aeZ' and 1 ^ j ^ # i>} 

where all the are new symbols, h is defined by 
h(a) = {au>: 1 == #i>} for all a£Z', 

{w; if b, — a 
for all a e z and a otherwise 

K = (Z, ( f ' U L M - ^ p ) 

The equivalence of G and H is easily established. Hence the theorem holds. • 
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Corollary 3.2. A language is context-sensitive if and only if it can be generated 
by a propagating s-grammar with a selector the language of which is a word monoid. 

Proof. The if direction can be shown by a standard automata-theoretic 
construction. The only if direction follows from Theorem 3.2. • 

Corollary 3.3. Every context-sensitive language can be generated by an s-grammar 
with a selector of the form (<P, h(0*), £), where 0 and are alphabets, 
£HOM(0, $) and £<= 

Proof. Immediate from Corollary 3.2. • 
This result implies that we should be careful when using homomorphisms or 

(finite) substitutions in ¿-grammar constructions because we are liable to arrive 
at very large language families. Corollaries 3.1 and 3.3 show that a homomorphism 
may take us from the family of EOL languages to the family of context-sensitive 
languages. 

4. On shadows 

The following grammatical construction will often be used in the sequel. It 
generalizes the classical construction used to obtain the synchronized version of an 
EOL system (see, e.g., [RS]) to the case of ¿-grammars. The main goal of this con-
struction is to obtain an equivalent ¿-grammar where the "representational" and 
the "generative" role for terminal symbols are separated. 

Definition 4.1. (1) Let 0 and T be . alphabets such that 0 f ! T = 0 and 
# 0 = # r. Let q be a fixed injective coding in HOM (0, F). 

For an alphabet <P such that 0 s 4 > and fl T = 0 we define the finite substi-
tutions shad®^ and fshad0>(, in FSUB ($, 3>Uf) as follows. 

For all ae$-0, 
shad„ije(a) = fshad4,e(a) = a, 

for all a£ 0 , 
shad«,>i(,(a) = fshad®je(a) = {a, g(a)} 

and, for all a £ 0 , 
shad®i0(a) = g(a) and 

fshadtf, e(a) = {a, g(a)}. 

(2) Let K — {<P, L, 0 ) be a selector and let r be an alphabet such that 
i>, 0, r and g are as in (1). 

The shadow of K with respect to g, ^denoted by she (K), is the selector 
(4>\jr, shad® e(L), 0 ) and the full shadow of K with respect to Q, denoted by 
fshe (K), is the selector <$Ur , fshad^^L), 0 ) . 

(3) Let G = (I,h, S,A,K) be an ¿-grammar and let Total (G) and 
0=Teral (G). Let <P, 0 , T and Q be as in (1). The shadow of G with respect to 
Q is the ¿-grammar (ZU o(zl)U {F}, h', S, A, shG, (K)) where Q is the restriction 
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of Q to Term (K), F is a new symbol, 

h'(e(a)) — shad®, e (ft (a)), for all a£Z and 

h'(a) = {F}, for all a£A\J{F). 

The full shadow of G with respect to Q is the ¿-grammar {F}, h", S, A, 
fshe, (K)), where Q' is the restriction of Q to Term (K), F is a new symbol, 

h'(Q(a)) = fshad0te(h(a)), for all a£Z-A and 

h'(a)={F}, for all a£JU{F}. 

(4) A (full) shadow of a selector K is the (full) shadow of K with respect 
to some injective coding Q. 

A (full) shadow of an ¿-grammar G is the (full) shadow of G with respect 
to some injective coding Q. n 

Theorem 4.1. Let G be an s-grammar. Then, for all shadows and full shadows 
H 0 / G , L ( # ) = L ( G ) . 

Proof Immediate from the definition. • 

Theorem 4.2. Let G be an s-grammar and let H be a shadow of G. If G is 
abf (ai, ci, csf, e) then so is H. 

Proof Immediate from the definition. • 
As a matter of fact, a shadow of an ¿-grammar is not necessarily cbf or asf 

or u or ou, if the original ¿-grammar is cbf or asf or u or ou, respectively. 
This observation should be contrasted with the following result. 

Theorem 4.3. Let G be an s-grammar and H a full shadow of G. If G is 
abf (cbf, ai, ci, asf, csf, ou, u, e) then so is H. 

Proof. Immediate from the definition. • 
Let Z and 0 be alphabets and let <p be a mapping from Z* into 0*. 
— <p is bar-preserving if <p(a)^0* and <p(a) ^ Q* for all a£ Z. 
— <p is bar-invariant if it is bar-preserving and, furthermore, cp(a) = q> (a) 

for all Z. • 
Theorem 4.4. Let X be a family of selectors that is closed under bar-preserving 

letter-to-letters substitution. Then for every every shadow of K is also in 3C. 

Proof. Immediate by the definition of a shadow. • 

Theorem 4.5. Let be a family of selectors that is closed under bar-invariant 
letter-to-letters substitution. Then for'every K^jf every full shadow of K is also 
in 

Proof. Immediate by the definition of a full shadow. • 

Lemma 4.1. Let S? be a selector scheme. Then if is closed under bar-invariant 
letter-to-letters substitution. 
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Proof. Immediate from the definition of a selector scheme. • 

Corollary 4.1. Let Sf be a selector scheme and let Then every full 
shadow of K is also in £P. 

Proof Immediate from Lemma 4.1 and Theorem 4.5. • 

5. Synchronization 

In this section we will investigate the possibilities of obtaining synchronized 
normal forms for ¿-grammars. We start by using the operations of shadowing and 
full shadowing. 

Theorem 5.1. Let G be an s-grammar. Then every shadow and full shadow of 
G is synchronized and equivalent to G. 

Proof. Immediate from the definition of shadows and full shadows and Theo-
rem 4.1. • 

However the use of the full shadow construction (rather than the shadow 
construction) gives us additional advantages in the sense that we stay within a family 
of selectors satisfying some additional properties (see Theorem 4.3). 

Theorem 5.2. Let № be a family of selectors that is closed under bar-invariant 
letter-to-letters substitution. Then for every s-grammar G with Sel (G)€Jf there 
is an equivalent synchronized s-grammar H with Sel (H)^^C. 

Proof. This is immediate by Theorems 4.1, 4.5 and 5.1. • 

REMARK. If one changes the statement of the above theorem by requiring 
"bar-preserving" rather than "bar-invariant", then the proof (of such a modified 
version) of the theorem can be obtained by using the shadow operation. • 

Continuous grammars were introduced in [EMR] as a "missing link" between 
sequential and parallel rewriting as seen from the theory of ¿-grammars. In the 
sequel we will apply some of our results also to continuous grammars. 

Definition 5.1. Let n £ l . An (n-)continuous selector is a selector K, where 
n 

La (K) is of the form \J 0*$*3* for alphabets 0 l 5 ..., 0„, ..., and 
;=i 

Sj, . . . ,£„ of symbols without bars. 
An ¿-grammar with an «-continuous selector is termed a (n-)continuous grammar. 

A continuous language is the language of a continuous grammar. • 

Corollary 5.1. Let n^ 1. For every n-continuous grammar there is an equivalent 
synchronized n-continuous grammar. 

Proof. This is immediate from Theorem 5.2 because bar-invariant letter-to-
letters substitutions preserve the structure of selectors of «-continuous grammars. • 

Corollary 5.2. For every ETOL system there is an equivalent synchronized 
ETOL system. 

Proof. This is an immediate consequence of Corollary 3.1 and Theorem 5.2. • 
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Corollary 5.3. For every EOL system there is an equivalent synchronized EOL 
system. 

Proof. Immediate from Corollary 3.1 and Theorem 5.2. • 

Corollary 5.4. Let if be a selector scheme and let G be an s-grammar with 
Sel (G) € i f . Then there is an equivalent synchronized s-grammar H with Sel (H)££f. 

Proof. Immediate from Lemma 4.1 and Theorem 5.2. • 
Grammars considered in classical formal language theory (for example context-

free grammars) do not rewrite terminal symbols. A straightforward simulation of such 
grammars by ¿-grammars yields productions of the form (a, a) for each terminal 
symbol a. Productions of this form yield "total desynchronization". ¿-grammars 
containing such productions will be considered now. 

Definition 5.2. An ¿-grammar G is totally desynchronized if for all terminal 
symbols of Base (G), (a, a) € Prod (G) and a£alph (La (Sel (G))). • 

Theorem 5.3. Let Jf be a family of selectors that is closed under union with 
monoids and under bar-invariant letter-to-letters substitution. Then for every universal 
s-grammar G with Sel (G)£yT there is an equivalent universal totally desynchronized 
s-grammar H with Sel (H)£JF. 

Proof. Let G' = ( I , h, S, A, K) be a full shadow of G. Let <Z> = A1 (K) and 
0 = T e r m (K). (la <t> because G is universal). Note that Let T b e a n 
alphabet disjoint from I with # r = # 4 . Let cp in_HOM($, ( £ - I ) U f ) be 
a bar-invariant injective coding that is the identity on $—A. 

Let H be the ¿-grammar (XUT, h', S, A, K'), where 

K' = (<p($), ( L a ( / 0 ) U r * U ( r U r U Z ) * , Term (K)) 

and h' is defined by 
h'(a) = h(q>(a)) for a£Z-A and 

h'(<p(aj) = h'(a) = a for a£A. 

It is straightforward to see that L(H)=L(G) and that H is totally desynchronized" 
Since it follows that K'£Jf. Moreover, K' is universal and hence the 
theorem follows. • 

REMARK. It is well-known (see, e.g., [ R S ] ) that a totally desynchronized normal 
form exists for the family of ETOL systems but it cannot exist for the family of 
EOL systems. Theorem 5.3 together with Corollary 3.1 allows one to see this well-
known fact in a more general perspective. • 

6. Chain-freeness 

In this section we will investigate the possibilities of obtaining chain-free normal 
forms for ¿-grammars. Our first method for obtaining chain-free normal forms 
preserves also the propagating property. 

Theorem 6.1. Let Sf be a bf selector scheme and G an s-grammar with 
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Sel (G)Ç6f. Then there is an equivalent chain-free s-grammar H with Sel (H) £ y. 
Moreover, if G is propagating then so is H. 

Proof Let G be a full shadow of G. By Theorem 4.1 and Corollary 4.1, 
Sel (G)e£f and L(G) = L(G). First we consider the symbols of Total (G) -Al(Sel(G)). 
Without loss of generality we may assume that for every non-terminal symbol 
A of G that is not in Al (Sel (G)), (A, F) is the only production in G in which 
A appears. Note that the failure symbol F is not versatile in G and thus produc-
tions of the form (A, F) are not chains. For every terminal symbol c in G that 
is not in Al (Sel (G)), we remove all productions with c as a lefthand side and add 
one production (c, c). Hence, in the resulting grammar G', c is not versatile 
anymore and thus productions of the form (b, c) are not chains. Clearly G and 
G' are equivalent. So L(G') = L(G)., Moreover, for every chain (b, c) in G', 
both b and c are in Al (Sel (G')). 

The following algorithm yields a chain-free s-grammar H. 
— Let P be an initially empty set of chains and let H' be G' initially. 
— If H' = {E,h,S,A,K> is chain-free then let H = H'. 
— Otherwise let (b, c) be a chain in H', b^S, and let h^FSUBÇE, E) be 

defined by 

K{b) = h{b)-{c} and 

h1(a)=h(a) for a£I-{b). 

We add (b, c) to P. Let h' eFSUB (E, E) be defined by 

h'(a) = (h1(a)U{F}U 

U {u0dv..un^dnun: d l 5 ..., dn£{b, c), u0, ..., u„£(Z-{&})* 

and w0&w1&...Hn_1&w„£/i(a)})— {d: (a, d)£P} for all a£E. 
We then iterate this step for H' = (E, h', S, A, K). 

Clearly, this procedure terminates and produces a chain-free grammar. Thus 
it suffices to show that each iteration in the above algorithm preserves the generated 
language. 

Let H' = (E, h, S, A, K) be an ¿-grammar as above and let H1 be the ¿-grammar 
obtained from H' by eliminating the chain (b, c). If a derivation in H' does not 
rewrite b into c then this is obviously also a derivation in i ^ . Let thus (a, u^buÇ)^ 
6 Prod (H') for some a(LE and u, We look at the trace of a derivation 
in H' that contains this production and that rewrites the occurrence of b thus 
obtained into c at some further step, 

(5", ..., WxaVi, w2u1bu'1v2, ..., w3u2bu2v3, w^cu'^v^. 

K is csf and abf, and Al (K). Thus for every wbw'Ç_ La (K) and vvCw'ÇLa (K), 
wcw'Ç. La (K). It follows that there is a derivation in Hx with a trace of the form 
(S,..., x^ayj., x2z1cz'1y2, ..., x3z2cz'2y3, x4z3czá j4), where every x¡, yh z¡ and z¡ can 
be obtained from w¡, v¡, u¡ and u'¡, respectively, by replacing some occurrences 
of b by c. 

Note that b is always a non-terminal symbol since we construct a full shadow 
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first. Hence, if w4uscu'3v4 is a word over the terminal alphabet, it equals xiz3cz3yi. 
Thus :L( / f ) cL( f f , ) . 

The opposite inclusion can be shown similarly because K is sf and bf and 
A1 (K) (thus on one hand, ivcvv'^La (K) implies that iv6u>'£La (K), whw'^Ln(K) 

and iden (w)5iden (w')6La (K), and on the other hand, n>cu>'£La (K) implies 
that iden (w)B iden (w')€La(A:)). 

Therefore L( i / 1 )=L(/ / / ) and hence L(# )=L(G) . • 

REMARK. Note that the conditions of Theorem 6 .1 do not lead to strong limits 
on the language-generating power. In [KR] it was shown that bf and sf ¿-gram-
mars generate arbitrary length sets. • 

The following example illustrates the method from the proof of the above 
theorem. 

Example 6.1. Let G be the s-grammar ( I , h, S, A, K), where 

I = {5, A, B, C. a, b, c, FY 

A = {a, b, c}, 

K = {I, L, A), where L = IU (J (2lsnUZ13»+,i), 
»21 

and h is defined by 
h(S) = asAa6B, 
h(A) = {a7A, b5A, a2}, 

h(B) = {a6B, b8B, C, a2}, 

h(C) = {c8b, c8a2} and 

h(a) =h(b) = h(c) = h(F)= {F}. • 

Clearly G is bf and sf, but not chain-free. 

Let H be the ¿-grammar (E, h', S, A, K), where h' is defined by 

h'(d) =h(d) U {F}, for d£ {A, a, b, c, F), 

h'(S) = {a5AaeB, a5Aa6c, F}, 

h'(B) = {a«B, a6C, b8B, b*C, a2, F} and 

fc'(C) = {csB, c8C, c*a2, F}. 
H is chain-free, Sel (/f)=Sel (G) (because G was synchronized there was no 
need to change the selector) and 

L(H) = L(G) — {a5(p(w)a2a6il/(w)a2: w£{0, 1}*}, 

where cp£HOM({0, I}, {a, b}) and if/^FSUB ({0, 1}, {a, b, c}) are defined by 

<p(0) = a\ <p{\) = b\ 

iKO) = a6, 1^(1) = {b8, c8}. • . 
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REMARK. There are ways to specify conditions on a general selector family JT 
that allow the classical "context-free style" chain elimination for an ¿-grammar G with 
Sel (G)€X~. The conditions known to us do, however, involve intersection of the 
selector language with the set of sentential forms generated by G, in the following 
sense. Say that we are given a chain (b, c). We want to be able to introduce c in 
the new grammar, say H, wherever b could occur in a derivation of G. The 
problem arises from the fact that there may be a word in Sel (G) of the form wcw' 
that was not applicable in G (because no such sentential form existed there) but 
it becomes applicable in H (which derives iden {wcw') from its start symbol). 
To eliminate such a case we have to get rid of all the words w in Sel (G) for which 
iden (w) is not a sentential form of G. This does, however, complicate the structure 
of a selector to such an extent as to make the result "useless". For this reason we 
do not present an analog of Theorem 6.1 for the case when Sf is a selector family 
other than a selector scheme. • 

In the rest of this section we consider methods for achieving chain-free normal 
forms that make use of erasing productions. 

Theorem 6.2. Let K be_a selector, such that A1 (K) —Term(K) and Ad 
cTerm (K). If K is {T, T}-e and {T}-i and if A*^La (K), then for every 
s-grammar G = ( I , h, S, A, K), where I , there is an equivalent chain-free 
s-grammar H with Sel (H)=K. 

Proof Let H=(ZUT, h', S, A, K), where h' is defined by 
h'(a) = (h(a)-Z)U{bT: bih{a)C\I} for all a£Z and 
h'(T) = X. 

Since H is chain-free it remains to show that L(if)=L(G). 
Let S=g w, w£A*. Then S=>-v for some v with erase^}(v) = w because 

K is {T}-i. But t)=>w because (¿lU{T})*cLa (K). Hence L ( G ) c L № ) . 

Vice versa it can easily be seen by induction on i that if S=> x then 
H 

* 

5=>erase{T}(x) because K is {r, T}-e. Therefore L ( i / ) eL (G) and hence the 
equality holds. 

Note that T-e is necessary here, because there may be a word w in La (K), 
such that u=eraseT()v)^ La (K). v is blocked in G but w is unblocked in H and, 
hence, additional words may be generated in H. • 

Theorem 6.3. Let № be a family of selectors that is closed under union with 
monoids. Then for each s-grammar G with Sel (G)£ Jf" there is an equivalent chain-
free s-grammar H with Sel (//)£ Jf". 

Proof. Let G={I,h, S,A,K) and let T be a new symbol. Let Base (H) 
be as in Theorem 6.2 and let 

Sd(H) = <A1(A-)U{T}, La (K) U (£ U {T})*, Term (K)). 
The equivalence of G and H can easily be seen by observing that every derivation 
D of length 1 in G is simulated by a derivation D' of length 1 or 2 in H \ the 
first step of D' rewrites like D, maybe introducing some occurrences of T. If 
any T's were introduced the second step of D' erases them. • 

3 Acta Cybernetica VI/3 
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Corollary 6.1. For every ETOL system there is an equivalent chain-free ETOL 
system. 

Proof. Immediate from Theorem 6.3 and Corollary 3.1. • 
We define now an operation that is based on the well-known shuffle operation 

(see, e.g., [HU] and [RS]) that allows us to specify conditions for achieving chain-
free normal forms (also applicable to the EOL case). 

Definition 6.1. Let K and L be languages over A and 0 , respectively. 
The full shuffle of K and L, denoted by KILL, is defined by 

K]LL = KULU 
{x1y1x2yt...xnyn: n S 1, xlt ...,xn£A*, 

yx, ..., y„£0*, Xi-.X^K and yv..y„eL}. • 
Theorem 6.4. Let Jf be a family of selectors that is closed under bar-preserving 

letter-to-letters substitution and full shuffle with monoids. Then for each s-grammar 
G with Sel (G)£ Jf" there is an equivalent chain-free s-grammar H with Sel(i7)£Jf. 

Proof. Let G' = (I, h, S, A, K) be a shadow of G and let T be a new symbol. 
Let H be the ¿-grammar <IU {T}, h', S, A, K'), where 

K' = (Al (K)U{T}, La (K) J1f *, Term (K)) 

and h' is defined by 
h'(a) =(h(a)-(Z-A))U{bT: b£h(a)n(Z-A)}, for a^I-A, 
h'(a) = a, for a£A, and 
h'(T) = X. 

The equivalence of H and G', and hence of H and G, follows from the 
observation that for all a(i A, alph (La(^f)) and hence replacing the productions 
for those a by identity does not change the generated language. (As a result the 
terminals are not versatile and productions of the form (A, a), a£A, are not chains. 
This implies the chain-freeness of H.) 

Since the symbol T is only introduced together with a non-terminal symbol 
it follows that (in a successful derivation) it can be erased in a next derivation step. 
Moreover K ' e t f and the theorem follows. • 

Corollary 6.2. Let Jf be a family of selectors that is closed under bar-preserving 
letter-to-letters substitution and inverse weak identity, such that for each K£Jf, 
).£ La (K). Then for each s-grammar G with Sel(G)6JT there is an equivalent 
chain-free s-grammar H with Sel (H)d^. 

Proof The corollary is immediate from Theorem 6.4 because for all languages 
L with l^L and for all monoids 0* such that 0f la lph(L) = 0 

1 1 0 * = erased HZ-)- • 
Corollary 6.3. For every EOL system there is an equivalent chain-free EOL 

system. 

Proof. This follows immediately from Theorem 6.4 and Corollary 3.1. • 
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7. Removing ¿-productions 

In this section we will investigate the possibilities of removing erasing produc-
tions. As a first step towards this goal we introduce and investigate a normal form 
for ¿-grammars in which the "erasing", and "terminal-generating" roles of symbols 
are separated; i.e. if a symbol derives A (in the base of the grammar) then it 
cannot derive (in the base) a word containing any terminal symbols. 

Definition 7.1. Let G=(Z, h, S, A, K) b e a n ¿-grammar. G is in A normal 
form (ANF) if for all a£Z—{S} with a====>A, a ====>• w implies that 

ase 

The set I : a Base(G) A} is then called the X-alphabet of G and is denoted 
by Lamal(G). • 

REMARK. From the constructions in Theorems 2 . 1 through 2 . 6 it can be seen 
that ANF is indeed a normal form for ¿-grammars. • 

Theorem 7.1. Let Jf be a family of selectors that is closed under bar-invariant 
letter-to-letters substitution. Then for every s-grammar G with Sel (G)£jf there 
is an equivalent s-grammar H in ANF with Sel 

Proof. Let G=(Z, h, S, A, K). 
Let Z' = {a^Z — {5}: a-Ba*(c)->A} and Zx={ax: af_Z'}, such that Zx is an 

alphabet of new symbols. 
Let <p be the infective coding in HOM(Z', Zx) defined by (p(a)=ak. 

Let ip£FSUB (Total~(G), T ^ a R c ) UZ x ) be defined by 

\j/(a) = {a, a1} for a£Z'. 

ip{a) = a for a6 ( I -Z ' )U(Al (K)-Z) and 

il/(a) = for a 6 Total (G). 

Let H be the ¿-grammar (¿"UI^, h', S, A, K'), where 

K' = (ip (A1 (*)), ¡A(La (K)), Term (K)) 

and h' is defined by 

h'(a*-) = (p(h(a)f)Z'*)U{F} for all a£Z'. 

h'(a) = (ip(h(a))n(IUZX)*Z(ZUZx)*)U {F} for all adZ-{5} and 

h'(S) = \j/(h(S)). 
It is easy to see that L(/ /)=L(G) and that H is in ANF. Moreover, K' is in 

and hence the theorem holds. • 

Corollary 7.1. Let n & 1. For every n-continuous grammar there is an equi-
valent n-continuous grammar in ANF. 

3« 
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Proof. Immediate from the definition of continuous grammars and Theorem 
7.1. • 

Corollary 7.2. For every ETOL system there is an equivalent ETOL system 
in ANF. 

Proof. Immediate from Corollary 3.1 and Theorem 7.1. • 

Corollary 7.3. Let £f be a selector scheme. Then for every s-grammar G with 
Sel (G)££f there is an equivalent s-grammar H in ANF with Sel 

Proof. Immediate by Theorem 7.1 and Lemma 4.1. • 

Corollary 7.4. For every EOL system there is an equivalent EOL system in ANF. 

Proof. Immediate from Corollaries 7.3 and 3.1. • 
We will now investigate the possibilities of obtaining propagating ¿-grammars 

from ¿-grammars in ANF. 

Theorem 7.2. Let G be an s-grammar in ANF that is Lamal (G)-i and 
Lamal (G)-e. Then there is an equivalent propagating s-grammar H with Sel (H) = 
=Sel (G). 

Proof. Let G=(I,h, S, A, K) and let Ex=Lamal (G). 
Let H be the ¿-grammar ( I — Ix,h',S,A,K) where h! is defined by 

h'(a) = erase£;i(/i(a)) for all 

Obviously, H is propagating. It remains thus to show that G and H are equi-
valent. We shall show by induction on i that there is a monotonously increasing 
sequence of integers j0,ji, • •• such that if u for some word w£1* then 

G 

eraseiA(w). 

BASIS. Let / =0. Then j\ =0. 
INDUCTION. Let the induction hypothesis hold for i. 
Let x=> y. By induction sM- eraseiA(x). If eraseiA (>•)=eraselA (x) then 

G G H 
the hypothesis is also true for z'-f 1 by letting ji+1=ji-

Otherwise there must be a word z£La(X) with iden (z)=x, such that (z) 
is the barred trace of a derivation of length 1 of y from x. Since K is it 
follows that erasej (z)£La(^T). Therefore erase^x) => erase^y) , which proves the 
induction hypothesis for /+1, letting j i + i = j i +1. 

Thus L (G)cL( i i ) . 
The converse inclusion can easily be proved in a similar manner, showing that 

there is a monotonously increasing sequence of integers j0, ju ... such that if 
S=> x for some word x££* then there is a word zEerasej/fx) such that z. 

H G 
Hence L(H)=L(G) and the theorem follows. • 



Grammatical constructions in selective substitution grammars 263 

8. Productions in binary form 

In this section we will investigate the possibilities for ¿-grammars of obtaining 
equivalent binary ¿-grammars. 

Let S and 0 be alphabets. A mapping from I* into 0* is called a barring 
mapping. 

Theorem 8.1. Let be a family that is closed under inverse weak identity and 
barring letter-to-letters substitution. Then for every s-grammar G with Sel (G)iJC' 
there is an equivalent binary s-grammar H with Sel 

Proof. If G is already binary, then the statement of the theorem follows for 
H = G. Let thus Maxr(G)s3 . Let G=(E, h, S, A, K) and let / = # Prod (G). 
Let (aj,bjynj ... bJtl), I = j ^I, be the productions in Prod (G), in some arbitrary 
order, where a}, bjA, ..., bjn£E for l ^ j ^ l . 

A derivation D of length 1 in G will be simulated by a derivation D' in 
H of length Maxr(G) —1 as follows: 

— Every symbol a that is not rewritten in D occurs as (a, 2) and every 
symbol a that is rewritten in D occurs as itself in the (left hand side of the) first 
word of D'. 

— Every symbol in the z'th word of Trace (£>'), 1 ^ / < M a x r (G)—2, is either 
a tuple of the form (a, Maxr (G)—z) or [j, Maxr (G)—/] or (a, Maxr (G)—i). 
The tuples within angled brackets represent symbols that are not rewritten in D. 
If a symbol a is rewritten using the j ' t h production in Prod (G) (i.e. (a, bj„...bJtl)), 
it is first rewritten in H into [7, Maxr (G)] (or into ibj n j , Maxr (G))[j, Maxr (G)] 
if nj = Maxr (G)). The tuples [j, m] within square brackets keep track of the y'th 
original production by deriving a pair of tuples (6y,m_i, m — l)[y, m — 1] for m^ 
s + 1 and by "counting down" to [j, m— 1] if m > n j + \. The tuples within 
parentheses keep on "counting". 

— Finally, every tuple of the form (a, 3) or (a, 3) is rewritten into a or 
(a, 2), and every tuple of the form [J, 3] is rewritten into CJ^CJ^, where cJA is 
either bJti or (pJti, 2). 

Formally, let 

$ = {(a, i): a € l and 3 s i s Maxr (G)} and 

0 = {(a, i>: a£Z and 2 ^ i S Maxr (G)}U 

U{[/c, ¿]: 1 3= k I and 3 =5 i S Maxr (G)} 

such that 0 and Total (G) are pairwise disjoint. 
Let <p be the barring letter-to-letters substitution in FSUB (Total (K), 

Total (K) U 0 ) defined by 

<p(a) = {<a,j>: 2 ^ j ^ Maxr (G)} for all adl, 

(p(a) = a U {[ j, i]: a} = a and Maxr(G)} for all a£l, 

cp(d) = q>(a) = a for all aiM(K)-X. 
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Let H be the ¿-grammar <ZU<£U0, h\ S, A, K'), where 

K' = (<i>Uiden(<p(Al (£))), erased1 (cp (La (K))), Term (AT)) 

and h' is defined by 

h'(a) = {[j, Maxr (G)] :aj = a and tij Maxr (G)}U 

U {(bJ>nj, Maxr(G))[/, Maxr(G)]: = a and rij = Maxr(G)} 

for all a£Z, 

m] otherwise 

for all 3 32 m s= Maxr ( G ) - 1 and 1 ; ^ 1, 

'{W. c£{bhi,(bjiit2)} for if {1,2}} if n , s 2 
h'([j,3])= <f>y>1,2>} if n j = 1. 

X otherwise 
for all I S j ^ l , 

h'((a, i + 1)) = (a, i) for all a£Z and 3 S i S Maxr ( G ) - l , 
h'({a, i + 1)) = (a, i) for all a£Z and 3 =a i si Maxr ( G ) - l , 

ft '«a, 3» = h'((a, 3)) = {a, (a, 2>} for all a^Z and 
h'((a, 2» = (a, Maxr (G)> for all a£Z. 

Since H is binary and K'dcdT whenever it remains to show that 
um=UG)-

Let \j/£FSUB(Z,ZU0) be defined by 
[¡/(a) = {a, (a, 2)} for all a£Z 

and let x be the injective coding in HOM (Z, I U 0 ) defined by 
X(a) = (a, 2) and 
X(a) = a. 

It can now easily be seen from the construction of H that every derivation 
D of length 1 in G can be simulated in H. Let Trace (D)=(x, j>) and Btrace(£>) = 
= (z). Then x(z) M a ^ G ) ~ 1 >» for aU 

Thus, L ( G ) c L ( # ) . 
The converse inclusion follows from the fact that tuples (i.e. symbols from 

0 U <P) can only occur together in a sentential form of H if they have identical 
second components. Moreover, if the second component of the tuples is not 2, 
then this sentential form consists exclusively of tuples; otherwise, symbols from 
Z can occur together with symbols of the form {a, 2) where a£ Z. Hence, successful 
derivations in H simulate successful derivations in G as described above. Therefore, 
L ( i ) c L ( 6 ) , and thus we have that L(/ /)=L(G). This completes the proof of 
the theorem. • 
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REMARK. A similar construction can be performed in which every derivation 
of length 1 in G is simulated by a derivation of length flog2 Maxr (G)] in if using 
a "balanced" decomposition of the original productions. • 

Corollary 8.1. For every EOL system there is an equivalent binary EOL system. 

Proof. Immediate from Theorem 8.1 and Corollary 3.1. • 

Theorem 8.2. Let be a family of selectors that is closed under union with 
monoids. Then for every s-grammar G with Sel (G)£ Jf there is an equivalent 
binary s-grammar H with Sel (H)£ J f . 

Proof. If G is already binary, then the statement of the theorem follows for 
H = G. Let thus Maxr(G)=?3. Let G = (Z, h, S, A, K) and let / = # Prod (G). 
Let (aj, bJt„j, ...,bjA) I s j s l , be the elements of Prod (G) in some arbitrary 
enumeiation, such that a5, bjtl, ..., bj nj£Z for I s j = l. 

Let 0 = {[j, i]: 1 = 7 = / and 3 ¿iSnj} such that 0 and Total (G) are 
pairwise disjoint. 

Let H be the ¿-grammar (ZU0 , It', S, A, K'), where 

K' = <AICT)U2;U0, LaCfi:)U(0UZ)*, Term (K)) 

and h' is defined by 

h'(a) = (h(a)-ZZZ+)U{bLnj[j, n}]: a = as and nj ^ 3} for all a£Z, 

h'([j, m + l]) = bJtm[j, m] for all 1 ^ j S I and 3 S m ^ ny and 

h([j,3]) = bJi2bJtl for all I S j ^ l with n, 3. 

Obviously, It can now easily be verified that, for all x, y£Z*, x=> y if and G 

only if x=>y for some 1 Si^Maxr (G) — 1. Hence, L(//)=L(G). Moreover, H 
H is binary and thus the theorem holds. • 

Corollary 8.2. For every ETOL system there is an equivalent binary ETOL system. 

Proof. Immediate from Theorem 8.2 and Corollary 3.1. • 
Note that the constructions presented in Theorems 8.1 and 8.2 are of a basically 

different nature. The former is of a "parallel" nature, while the second one is of 
a "sequential" nature. 

REMARK. TO apply the construction of Theorem 8.1 to the case of a selector 
scheme ^ we note that the construction requires all symbols in the resulting 
selector to be barred. Thus, for all K^if, La (K) c A1 (K)*. 

The construction requires that every K£ y must be A1 (A>interspersed and, 
in order not to add new words to the language by unblocking, A1 (A")-erasing. 
These conditions imply, however, that = A1 (K)*, which restricts the family of 
generated languages to EOL languages (see Corollary 3.1). 

A similar argument can be used for the construction of Theorem 8.2. • 
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9. Removing right recursion 

In this section we will investigate the possibilities of obtaining non-right-
recursive normal forms for ¿-grammars. First we will consider the introduction of 
erasing productions as a method to eliminate right recursion. 

Theorem 9.1. Let & be a family of selectors that is closed under inverse weak 
identity, bar-preserving letter-to-letters substitution and union with monoids. Then 
for each s-grammar G with Sel (G)6 JT there is an equivalent s-grammar H with 
Sel ( / / ) € X that is not right-recursive. 

Proof. Let G'={I,h, S, A, K) be a shadow of G and let T be a new symbol. 
K is in Jf by Theorem 4.4. 

Let (p£HOM (I, IliT) be defined by 

q>(a) = a for 

<p(a) — aT for a i I - ( J U { 5 } ) . 

Let H be the ¿-grammar <IU {r}, (poh, S, A, K'), where 

K' = (A1 (A")U {T}, erasef1 (La (AT)) U(¿1U T)*, Term (K)). 

It is easy to see that H is equivalent to G and that H is not right-recursive. More-
over, . Hence the theorem holds. • 

REMARK. The conditions that are necessary to apply the construction of Theo-
rem 9.1 to selector_schemes yield a trivial result; each selector language would be 
either of the form I* or of the form I* for some alphabet I . (For an analogous 
argument see section 8.) • 

The following example illustrates the method from the proof of Theorem 9.1. 

Example 9.1. Let G be the right-recursive ¿-grammar ( I , h, S, A, K), where 

I = {S, S', Z, Alt A2,B1, B2, B3, F, a, b}, 

A = {a, b}, 

K= (1,(1-2)*, A) 

and h is defined by 

h (S) = 5', h(S') = A,Z, h(Z) = faS', Bs}, 

h(A]) = {A,A2, a}, h(Bj = {B,B2, b}, 

h(A2) = {A2, a), h(B2) = {B2, b}, h(B3) = b, 

h(a) = h(b) = F. 

Let H be the ¿-grammar (XU {T}, h', S, A, K'), where 
K' = <ru{r}, ((i-2)U:r)*U(^UT)*, A) 
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and h' is defined by 

h'(S) = S', 

h'(C) = h(C)T for C£{S',Z,A1,A2,B1,B2, £3}, 

h'(a) = h'(b) = F and 

h(T) = l. 
Clearly ~L{G)=~L(H)={a2"bZn~1...a2b:n^l}. Moreover, if is not right-recursive. • 

REMARK. Another method to eliminate right recursion is the classical Greibach 
Normal Form construction (see, e.g., [S]). We conjecture that there is no non-
trivial condition that allows us to apply this construction to ¿-grammars, because 
it changes the structure of the grammar in a very severe way; for instance, symbols 
are shifted from one end of a production to the opposite end, other symbols are 
eliminated and yield thus changes in the length of derivations. 

Formally we base our conjecture on the result that there is no Greibach Normal 
Form for EPTOL systems, as shown in the next theorem. • 

Definition 9.1. (see, e.g. [R]). Let G=(Z, S, A) be an ETOL system. 
— Let n s l . Let Jfn={hilo...ohin: h£Jif}. 

For every let <p' be the finite substitution in FSUB(Z,Z) defined by 

(p'(S) = {wfZ*: s 4 w for O s j s n } and 
G 

(p'(a) = cp(a) for a€ i ; -{S} . 
The speedup of G by n, denoted by speed„ (G), is the ETOL system (Z, {cp': 
q>t*„}, S, A). 

— An ETOL system H is a speedup of G if there is an integer n s 1 such that 
/T=speed„ (G). • 

Note that, for every ETOL system G and for every integer L(G) = 
=L(speed„ (G)). 

The following lemma can easily be established using standard techniques from 
the theory of ETOL systems. 

Lemma 9.1. Let G£(Z, S, A> be an ETOL system. Then there is an ETOL 
system H that is a speedup of G such that, for all symbols b£Z — {S} which derive 
a word in A* and for all derives a word in A* in j steps. 

Theorem 9.2. Every EPTOL system that generates the EOL language L= 
= {a2nb2n~1a2n~2...b3a2b: n^ 1 } is right-recursive. ' 

Proof It follows from Example 9.1 and Corollary 3.1 that L is an EOL 
language. Let us assume that there is a non-right-recursive EPTOL system G±= 
=(Z, S, {a, b}) with L(GX)=L. 

For the rest of this proof we will make use of derivation trees as customary 
in L system theory (see, e.g., [RS]). 

The symbol b is the rightmost symbol of every word in L. Thus, the right-
most path in every derivation tree of a word in L (up to "the first occurrence of b) 
cannot be longer than # Z because, otherwise, Gx would be right-recursive. Since 
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L is an infinite language, it follows that b must derive itself (because, in a given 
ETOL derivation tree, all paths that lead from the root to a leaf have the same 
length). If there was a production (b, w) in Gx with w^b then b would be 
versatile and, hence, G¡ would be right-recursive. Therefore h(b)=b for all 
hdJiP. The same argument can be used to show that h(a)=a, for all /¡gjf, with 
an analogous reasoning for the second path from the right in derivation trees. 

Note that, for every symbol c£X and for every word x£X*, if c=> x and G | 
/ £ # X, then either x^X*{a, b) or x£Z*{d} for some non-versatile non-terminal 
symbol d (i.e. h(d)—d for all h^Jf). In the latter case, x can never be rewritten 
into a string in A*. 

Let G2=speed#x(G1). Note that L(C2)=L and that G2 is not right-recursive. 
Moreover, every production in G2 that can occur in the derivation of a word u^L 
must be of the form (c, wa) or (c,wb), where c€X and w£X*. 

Let us consider derivation trees of G¿. Since a and b derive only themselves, 
we will "prune" every path in such a tree at the uppermost occurrence (i.e. the one 
closest to the root) of a or b. We call the tree thus obtained a pine tree (see Fig. 
9.1). Note that in a pine tree every rightmost path of every (non-trivial) subtree 
is of length 1. 

Let us look at the pine tree of an arbitrarily large word w£L. Let n be some 
path in that tree that contains more than one occurrence of a symbol. Let C" be 
the uppermost occurrence of some symbol c that occurs more than once on n and 
let C be the lowermost occurrence of c on n. Let v denote the subword of w 
derived from C' and let n be the number of symbols in vv from v on to the right 
end of w. We will first show by contradiction that v cannot contain a subword 
of the from a'bJak or b'aJbk, for some 1. We can intercalate the subtree 
with root C' (not including the subtree with root C) n times. We "fill" the pine tree 
arbitrarily to the left and to the right such that it yields a word w' in the language 
(this is possible by Lemma 9.1). Note that w' still contains v as a subword. It 

S 

Fig. 9.1 
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contains, however, at least n symbols to the right of v, because each intercalated 
subtree derives at least one symbol to the right of C (we recall that every produc-
tion with left hand side c must be of the form (c, wa) or (c, wb) if it is to occur 
in the derivation of a word in {a, b}*). This is a contradiction. Hence, v must 
either be of the form a'bJ or of the form b'aJ for some i,j with iJrj = \. 

We can thus decompose every path n (from the root to a leaf) in the pine tree 
into two parts; is the subpath of it from the root to the first occurrence, say 
C', of the first symbol occurring more than once on n, and n2 is the subpath 
of 71 from C' to the appropriate leaf. Note that every such path % is of length 
^ Thus, there are at most A: = Maxr (G2)#i distinct nodes in all these paths 
iix together. 

For short, let us call a maximal adjacent sequence of a-s (b-s) in w a block. 
Note that every node in each path % as above can derive at most 2 blocks in w. 
Thus, w can contain at most 2k blocks. This is a contradiction. 

Thus every EPTOL system G with L(G)—L is right-recursive. • 

Abstract 

This paper investigates the possibilities of performing grammatical transformations on selective 
substitution grammars. The influence of the form of the selectors available on the possibilities of 
performing various grammatical constructions is considered. The grammatical transformations 
under investigation include standard ones, such as: 

removing chain productions, removing A-productions, restricting the right hand sides of 
productions to length 2 and synchronization. 
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On the complexity of graph grammars 

B y G Y . T U R A N 

1. Introduction 
S 

Graph grammars generalize "usual" word grammars by considering graphs 
as basic objects instead of words. A derivation step consists of the replacement of 
a subgraph by another graph. The delicate part of the definition of graph grammars is 
the way the embedding of the new graph is specified (in the string case this problem 
does not appear). 

This generalization appears to be quite natural and it has applications, too 
(Nagl [4]). However "nice" results of formal language theory characterizing classes 
of "languages from different aspects (grammars, automata, algebraic and logical 
descriptions) does not seem to generalize for the case of graphs. (There are two 
possible explanations: either the right definitions are not found yet and one should 
not only try to generalize notions of string grammars, or the situation is indeed 
different.) 

Another problematic aspect of graph grammars is the parsing of graph grammars 
(this is the topic we are going to discuss so we return to it later). 

There are several theorems in graph theory describing a class of graphs as the 
class obtainable from a set of start graphs applying a finite set of operations 
(e.g. the theorem of Tutte on 3-connected graphs [7]). These theorems can actually 
be considered as positive results about graph grammars. Understanding the power 
of these operations could be of interest for graph theory as well. To return the 
problem of right definitions we remark that interesting operations of graph theory 
(e.g. Hajos' operations to generate non-A>colourable graphs [1]) quite often do not 
fit into the present framework of graph grammars. 
f As to our knowledge there are few results about the parsing of graph grammars. 
Grammars investigated are usually generalizations of context-free grammars, thus 
it is natural to try to generalize context-free parsing for the case of graphs. In the 
paper of Vigna—Ghezzi [8] it is shown that a certain parsing technique is exponen-
tial for their class of grammars and polynomial if further restrictions are imposed. 
Slisenko [6] gives a rather restricted class of grammars that can be parsed in poly-
nomial time by a similar method (in fact he shows more: Hamiltonian cycles can be 
found in polynomial time when restricted to a context-free graph language). Results 

i 
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of Janssens and Rozenberg [2] show that parsing their node label controlled (NLC) 
grammars is as hard as context-sensitive recognition. 

One can ask the following questions about the parsing of graph grammars: 
— what general parsing techniques exist? 
— where is the borderline between "easy" and "hard" classes of grammars? 
The theorem proved in this paper gives a step towards answering the second 

question. We introduce a natural restriction of NLC grammars by requiring graphs 
on the right-hand side of productions to consist of more than one vertex. Languages 
generated by these grammars are always in NP. We show that these grammars are 
strong enough to generate NP-complete languages. Thus no efficient parsing 
technique can be expected that is applicable for monotone NLC grammars. 

2. Monotone node label controlled grammars 

Following Janssens and Rozenberg [2] we define node label controlled (NLC) 
graph grammars as follows. 

Definition. An NLC grammar ^ is a quintuple 

where Z is the (finite, nonempty) nonterminal alphabet; A is the (finite, nonempty) 
terminal alphabet (disjoint from Z); G0 is the start graph; SP is the set of produc-
tions: a production P is a pair (ah G,) where I , Gt is a graph; ^ is the 
connection relation: % ^(ZUA)X(ZUA). 

REMARK. Graphs considered are undirected, without loops and multiple 
edges. Edges are unlabeled, vertices are labeled with labels from ZUA. 

Derivations and the language L(IS) generated by ^ are only described in-
formally (see [2] for exact definitions). When applying a production P=(a;, Gt) 
to a graph G, we replace a vertex vt labeled with at by a graph isomorphic 
to G;. If v2 is a neighbour of vL in G labeled a2 and v3 is a vertex of Gt labeled 
a3 then in the new graph G' v2 and i?3 will be connected if and only if (a3, 
(see Fig. 1). Thus the embedding is controlled by the node labels only. L (^ ) consists 
of graphs derivable from G0 with all vertex labels belonging to A. 

Definition. A monotone NCL grammar is an NLC grammar satisfying the fol-
lowing condition: 

For every production P—(ahGi) the number of vertices of G, is more 
than one. 

This is the class of graph grammars we consider from the point of view of the 
complexity of languages generated. 
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3. The complexity of monotone NLC grammars 

Proposition. If ^ is a monotone NLC grammar, than L(^) is in NP (where, 
as usual, NP denotes the class of languages recognizable by nondeterministic 
Turing-machines in polynomial time). 

Proof. As for every production P={at, Gt) Gi consists of more than one 
vertex, if a graph G has a derivation in (S then the length of the derivation is at 
most n — 1 where n is the number of vertices of G. Thus the derivation can be 
guessed and checked in polynomial time. • 

Theorem. There exists a monotone NLC grammar ^ such that L(&) is 
NP-complete. 

Before turning to the proof we describe a property of graphs that will be used 
later on. 

A graph G=(V, E) has cyclic bandwidth S.k if there exists a cyclic ordering 
(t;1; ..., v„) of the vertices s.t. if (vhVj)£E then the cyclic distance of vi and Vj 
is at most k. (The cyclic distance of vt and Vj (/< j) is mm (j—i, n+i—j).) 

The class of graphs with cyclic bandwidth is denoted by CBt (here graphs 
are considered without vertex labels). The following result is mentioned in Johnson [3]. 

Theorem (Leung—Vornberger—Withoff). CB2 is NP-complete. • 
This result can be compared with the complexity of bandwidth (i.e. considering 

orders instead of cyclic orders): for any fixed k it can be decided in polynomial 
time whether the bandwidth of a graph is ^ k (Saxe [5]). 

Now we give an informal description of our construction. By G„ we denote 
the graph on n vertices consisting of a cycle of length n and edges connecting-
vertices of distance 2 on the cycle. G7 is shown on Fig. 2. 

Every graph G on n vertices with cyclic bandwidth S 2 is a subgraph of G„. 
Thus G can be constructed by building G„ and then deleting the edges of G„ not 
belonging to G. Gn can be constructed by building a chain (shown on Fig. 3) and 
then closing the chain. 

However, in order to be able to close the chain generated by an NLC grammar 
the edges connecting the "open" end of the chain with the "beginning" of the chain 
must always be present during the derivation and edges unnecessary after closing 
the chain must be forced to be deleted. These requirements can be fulfilled by 
defining the connection relation appropriately. 

We remark that the grammar G used to prove the theorem is a rather large 
one, we did not try to make it as small as possible. Instead, we tried to make it 
easy to describe and analyze. 

Proof of the theorem. First we describe the grammar ^ generating an NP-
complete language. 

The description of H. 
1) The nonterminal alphabet. 

e 
I = {S, A1,A2, A3, A4, A[, A'2, A3, A'4}U IJ 

i = l 
where 

^ = C„ D„ £,}U{C/\ £){>"», £/*"»: 0 ^ k,l,m S 1}. 
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2) The terminal alphabet. A = (x, y, zj. 
3) The start graph. G0=S. 
4) The productions. There are five groups of productions each playing dif-

ferent roles in the construction. 
4.a) Starting productions. These productions can be applied at most once in 

every derivation and exactly one of them must be used in every derivation as a 
first step. 

Consider the graph of Fig. 4 with 5 marked edges. Deleting all different sub-
sets of these edges we get 32 graphs / /1 ; ..., H32. The starting productions are 
of the form 

S 
o =>Hi for i = 1, ...,32. 

4.b) Chain-constructing productions. 

Bi Ci Bi+1 
o =• O O for i = 1, ..., 6. 

Here and everywhere else in the construction addition and subtraction is meant 
cyclically, e.g. 6 + 1 = 1. Using the productions belonging to this group a chain 
of arbitrary length can be generated. We use the following terminology : such a pro-
duction relabels the vertex labeled Bt by Ci and adds a new vertex labeled Bi+1. 

4.c) Chain-closing productions. 

Bt Di Ei+1 
O => O O for i = l, ..., 6. 

The role of these productions is to close the chain generated by applying pro-
ductions belonging to the previous group. Informally such a production relabels 
the vertex labeled Bt by Dt and adds a new vertex labeled Ei+1 that becomes 
the last'vertex of the chain. 

4.d) Edge-deleting productions. 

Ci Ci" y 
o =• o o 
Dt D{km y 
O => O o 
Ei E{klm y 
O =• O O for i= 1, . . . , 6, 

The role of these productions is to realize the deletion of edges. Vertex labeled 
Ci (resp. Du E^ is relabeled C{k (resp. D{km, E{klm) and a new vertex labeled 
y is added. The binary vector (J, k, I, m) indicates the set of edges to be deleted 
(in G„ every vertex has degree 4). 

Ai A'i -fy 
O => O O for i = 1, 2, 3, 4. 

The role of these productions is to. force the deletion of unnecessary edges if 
vertices labeled At "become terminal vertices too soon". 
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4.e) Terminal productions. 

Cf x 
O => O- •o 

z 

Djkm x 

o =»• o o 
z 

E{Um x 
O =• O O for i = l , . . . ,6 , O g j,k,l,m^\\ 

z 

X z 
O =» O O for i = 1, 2, 3, 4. 

5. The connection relation. As it is remarked already, the main regulating role 
in the derivation is played by the connection relation. Pairs belonging to the rela-
tion are divided into four groups. 

5.a) Pairs regulating the construction of the chain. 

(Q,Q-i), (Q>Q-2), i.Ci,Aj), (C„AJ, 

(Bt, C;_2), (Bt, Ax), (Bt, AJ for i = 1, ..., 6. 

5.b) Pairs regulating the closure of the chain. 

( A , C U ) , (Z>„ C,_2), (Pi, A^, (Du A2) 

(E„ Ci_2), (Ei, Ax), (Ei, AJ for i = 1, ..., 6. 

5.c) Pairs regulating the deletion of edges. 

(C{\Ni+s) for every Ni+i£jrl+s 

if ( j = 1 and S=-2) or (k = 1 and ¿ = - 1 ) , or (¿ = 1), or (5 = 2); 

(D{km, Ni+s) for every Ni+s^fi+i 

if ( j = 1 and 8=-2) or (k = 1 and ¿ = - 1 ) , or (5 = 1); 

(E{klm, Ni+i) for every Ni+i^i+s 

if 0 = 1 and 5 = - 2 ) or (fc = 1 and < 5 = - l ) ; 

(Ci\ A3), (C(\ AO if J = 1 

(Ci\ Ad, (C{\ Ai) if k = 1 

(C{\ At\ (IC(k, Ai) if j = 1 

(D{km, Ax), (D{km, Ax) if m = 1 

(Ejklm, Ax), (E{klm, Ai) if I = 1 

(E(klm, Ad, (E{klm, A2) if m = 1. 

4 Acta Cyberneiica VI/3 
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5.d) Additional pairs 

(N, x) for every N€ (J 
i=1 

(x, M) for every M ç r U / 4 ; 

04,', x) for ¿ = 1 ,2 ,3 ,4 ; 

(A!,Aj) for l = s i , 

Let G be an arbitrary graph without vertex labels. Define a graph G* with 
vertices labeled x, y, z as follows : 

1) label the vertices of G with x, 
2) join two different vertices to each vertex of G and label them y and z 

respectively. 
(An example is shown on Fig. 5.) 

The theorem will be proved if we prove the following claim. 

Claim. L(&) = {G*: G£CB2 and G has s 8 vertices}. 
First we show the 2 part of the claim. 
Let G£CB2 be a graph on s 8 vertices. We describe a derivation of G*. 
Take a suitable circular order (i;1; ..., un) of the vertices of G having circular 

bandwidth ^ 2 . Consider vertices v1,...,v7 and label them A1, Ai,C1,C2,B3. 
Take the subgraph spanned by vlt ..., v7 and add edges 

(p5,vj), (vs, v2), (ve, v j , (v e , v 2 ) , ( v 7 , v j , (v7,v2), 

(v5,v6), (v5,v7), (v6, v7) 
if they are not present yet. 

The derivation of G*. 
1) Apply a suitable starting production to obtain the labeled graph on vertices 

v1,...,v7 described above. 
2) Apply chain-constructing productions «—8 times. (The applicable pro-

duction is always unique.) 
3) Apply a chain-closing production. (The applicable production is unique.) 
4) For each vertex vk, 5^kSn define the binary vectors ¡}k), i^ky) ; 

ri:=(i% i!?î) where i f = l *> (vk, vk+j)eE. For k=n, 
n — 1, ..., 5 apply 

y 
O => o — — o if Vk is labeled 

D. D> I I y 
O =• O — o if vk is labeled Z>,; 

c , C f y 
o =• o — — o if vk 

is labeled C,. 

5) Apply terminal productions for each vertex labeled 

E>, № or C>. • ' I I 
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6) For k=4, 3, 2, 1 apply 

A, 
O =* 

A'i 
o-

y •o 
7) Apply terminal productions for each vertex labeled A[. 
After steps 1), 2), 3) we generated a labeled graph G' shown on Fig. 6, where 

k =n (mod 6). Vertices labeled Alt A2 are connected to every other vertex labeled 
Q , Dt or Ei. 

In step 4) unnecessary edges are deleted from vertices labeled C{k, D{km, E{kIm 

and pendant vertices labeled y are added. As A ^ ^ and A ' ^ ^ , all edges 
connecting A-l and A2 to vertices labeled C{k disappear and only the necessary 
edges connecting Ax and A2 to vertices labeled D{km, E{klm remain in the graph. 
In step 5) vertices labeled C{k, Djkm, Ejklm are relabeled x and their adjacencies are not 
changed. In step 6) vertices labeled At are relabeled A\ and pendant vertices labeled y are 
added. No change is made in this step in the edges, as edges between vertices 
labeled At and vertices outside the set of vertices labeled A-t are already disposed 
of, and internal edges are chosen correctly by the choice of the starting production. 
Finally in step 7) vertices labeled Ai originally get label x and pendant vertices 
labeled z are added. 

Now we turn to the c part of the claim. 
Let G be a graph belonging to L(G). We use the "relabeling" terminology 

introduced at the description of the productions. By the history of a vertex v we 
mean the sequence of labels appearing on v. The histories^ possible are the following. 

(The exceptional case 2 refers to the vertices labeled C1; C2 of the graph 
generated by the starting production.) 

The graph generated (not considering vertex labels) will always be a subgraph 
of of Fig. 7 for some n. 

(The nonterminal label Bt can be replaced by C; or Dh and a new nonter-
minal Bi+1 will appear in the graph unless B{ is replaced by Dt. Thus the gene-
ration of new vertices labeled Bit Ch Dt or Ei must end with a chain-closing 
production. Edge-deleting and terminal productions can be applied to nonterminals 
already present in the graph, thus making progress in the histories of each vertex, 
but these productions do not introduce new edges as (y, . ) and (z,.) is not in 
the connection relation.) 

1) Bi, C,-, Cyk, x for some i,j, k; 

2) C,-, Cjk, x for i = 1, 2 and some j, k; 

3) B^ Di, D{km, x for some i,j, k, m; 

4) Ei, Ei
JkIm, x for some i,j, k,l,m; 

5) Ai, A'{, x for some i; 

6) y; 

7) z. 

4* 



278 Gy. Turin 

The last point we have to check is that forbidden edges connecting vertices 
labeled originally AX,A2 and vertices ever labeled Cf do actually disappear. 
This can be shown considering the histories (Cf, Cjk, x) and (As, A'„, x) (s=l, 2). 
There are no pairs (C{k, A„) or (A's, C,) in the connection relation so the edge 
(Cf, A,) disappears whichever of the two histories makes progress first. The same 
holds for the pair (A2, Dt). 

Thus the second half of the claim is proved. 
Finally it is obvious that CB2 can be reduced to L(^) in polynomial time by 

forming graphs G*. • 

a,-
o 

G G' 

Fig. 1 

Fig. 2 

Fig. 3 
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Fig. 6 Fig. 7 
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Abstract 

A problem in the theory of graph grammars is the following: for what classes of grammars 
can the languages generated be parsed in polynomial time? It is shown that a grammar belonging 
to a rather restricted class, the monotone node label controlled grammars can be strong enough 
to generate an NP-complete language. 
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General products and equational classes of automata 

B y Z . ESIK a n d F . GECSEG 

The aim of this paper is to characterize those equational classes of automata 
which are obtained by means of the general product. It will be seen that such classes 
can be given by "patterns" of identities to be called ^-identities. Moreover, these 
equational classes are either very large or very small. 

1. Preliminaries 

Let F, <5) be an automaton, where A is the state set, F is the input 
set and <5 is the next-state function of 91. As it is well known 2C can be considered 
an F-unoid (F-algebra with unary operational symbols) 1l = (A, F) such that af= 
=S(a,f) (adA,f£F). Further on it will be supposed that F is finite. If A is also 
finite then we speak about a finite F-unoid. 

In the sequel F and F ' with or without indices will denote finite sets of unary 
operational symbols. 

As usual F* will stand for the free monoid freely generated by F. If p = 
=fi... fkdF* is a word and x is a variable then xp is the F-polynomial symbol 

Let K be a class of F-unoids. Then the operators H, S and P on K are 
defined as follows: 

H(AT): homomorphic images of unoids from K, 
S (K): subunoids of unoids from K, 
P(/Q: direct products of nonvoid families of unoids from K. 
By Birkhoff's Theorem (cf. [3]): For a nonvoid class K of F-unoids HSP(AT) 

is the smallest equational class containing K. 
Next we recall the concept of the products of automata (cf. [1]). 
Let Ff) (/£/) be anon-void family of unoids, F a finite set of opera-

tional symbols and 
cp: II(Ai\ia)XF-»n(Fi\i£I) 

a mapping. Take the F-unoid F) with A=n(Ai\i£I) and pr ,(a/) = 
=pri(a)pri(<p(a,/)) for arbitrary a £ A , f £ F and where pr; is the ith projec-
tion. Then 91 is the (general) product of 91 ¡(/£7) with respect to F and cp. 
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For arbitrary &£A,f€F and let <p,(a,/) be the/"1 component of (p(a,f). 
If there exists a linear ordering S on / such that for every /£/, cpt is independent 
of its / h component 0'£/) whenever j^i then 91 is an oL0-product. Obviously, 
if Ft=F and <Pi(a,/)=/ for arbitrary /£/, a£A and f(LF then is the direct 
product of 2If (/€/)• Let us note that the formations of the product, the a0-product 
and the direct product are transitive. Moreover, further on for a0-products in 
<p,(a,/) we shall indicate only those components on which (pt may depend, i.e., 
/ and pr /a) if j^i (j£I). 

Let K be a class of unoids (not necessarily of the same type). Then 
P9(A") is the class of all general products of unoids from K, 
Ffao(K) is the class of all a0-products of unoids from K with finitely many 

factors, and 
KF is the similarity class of F-unoids. 
To determine unoid identities preserved by products we recall the concept of 

an /-free system. 
Take a unoid 2I=(yi, F), an element and an integer / ^0 . The system 

(21, a) is I-free if ap^aq whenever p^q and |p|, \q\ = l {p, q£F*), where 
denotes the length of p. 

A state adA is ambiguous if there are f,f2£F such that a f ^ a f 2 . 
Obviously, every system (21, a) is 0-free. Moreover, it easily follows from the 

proof of the Theorem in [2] that for a class K of unoids the following statements 
are equivalent: 

(i) For an / > 0 and all F there is an /-free system (21, a) with 2l=(/i , F)£ 
eP/ao(K)C\KF, 

(ii) K contains a f&=(B, F') suchthatfora b£B and a p£F'* with \p\ = l - l , 
bp is ambiguous. Therefore, if / is the greatest integer under which the above 
/-free system exists then for arbitrary 93=(5, F')£K, b£B,p£F'* with \p\^l 
and f , M F \ bpf=bpf2. 

2. Identities preserved by general products 

Let K be an arbitrary nonvoid class of unoids. Then for every F, HSP9(^)fl iTF 
is an equational class since H SPB (A")=H SPPa (A-) obviously holds. Moreover, it is 
easy to show that HSP9(£) is closed under the general product. 

Now we introduce special identities to characterize HSPfl(A')n A p-
identity is 

(i) m = n, or 
(ii) (k ,m) = (k,n) 

where m, n and k are non-negative integers. A unoid <H=(A, F) satisfies p-identity 
(i) if 21 satisfies all identities xg^.-.g^yhi... h„ for arbitrary ..., gm, hlt ... 
...,hn£F. Moreover, 21 satisfies (ii) if it satisfies all identities xf ...fkgi ••• gm = 
=xf ...fkh ... hn for arbitrary fx, ...,fk, ..., gm, hu ..., hn^F. In these cases 
we also say that (i) or (ii) holds in 21. 

For a class K of unoids denote by K* the class of all p-identities holding 
in every unoid from K. Moreover, K** stands for the class of all unoids which 
satisfy every /^-identity in K*. Then we have the following 
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Theorem. For arbitrary F and nonvoid class K of unoids HSP9(AT)fl/(rf= 
^ ^ n A ^ H S F P ^ i A O n * , . 

Proof. Obviously /»-identities are preserved under general products. Thus 
K** 3 HSPg(70- Therefore, to prove the Theorem it is enough to show that 
HSPPfao(K)r]KFsK**C]KF which follows from statements (i) and (ii) below. 

(i) Let xg1...gm = yh1...h„ be an F-id entity satisfied by H S P P / 2 o ( 7 Q n . 
Then the /»-identity m=n is in K*. 

(ii) Let xf1...fkgl...gm=xf1...fkh1...hn be an F-identity holding in HSPP / ao(tf)n 
f)KF such that if m,n>0. Then the /»-identity (k, m) = (k, n) is in K*. 

We shall prove (ii) only. Statement (i) can be shown in a similar way. 
If for every / there are an 21=(A, F)£P/ao(K)OKF and an a£A such that 

(21, a) is /-free then in HSPP/t,0(AOnATf only the trivial identities hold. Therefore, 
HSPP /ao(A02A:F. 

Next assume that / is the greatest integer for which there exist an 2 l=(A, F)d 
£Pfac(K)C]KF and an a£A such that (21, a) is /-free. Let the identity xf1...fkg1... 
...gm=xf1...fkh1...h„ hold in HSPPfXo(K)C\KF where g^K if m, «>0. Suppose 
that the /»-identity (k, m)=(k,ri) is not in K*. Then we find a unoid 21'= 
—(A', F')£K, an element a'£A' and operational symbols f { , ...,fk, g[, ... 
...,g'm,h[, ...,h'n£F' under which 

Take the /-free system (21, a) above, and form the a0-product ©=(5 , F) of 
21 and 21' given by the function q>: AXA'XF—FXF' such that <Pi is the identity 
mapping of F. Moreover, 

9z(afi--fi,fi+i)= fi'+i if i s / , 

<Pz(afi-fkgi-Zn g i+i) = g,'+i if k + i^l 
and 

9*(afi-fkK~K hi+i) = hi+i if k + i S I. 
In all other cases <p2 is defined arbitrarily. Then in © we have 

(a, a')f1...fkg1...gm = (af1...fkg1...gm, a'f{ ...fkgi...g'm) ^ 

* (af1...fkh1...h„, a'f{...fih'x...K) = («, a')f1...fkh1..,h„, 
which is a contradiction. This ends the proof of the Theorem. 

Next we show that HSP^AOflA^ has a finite basis. As it has been noted if 
for arbitrary / and F' there are an 2l=(/f, F')€HSP9(A") and an a^A such that 
(21, a) is /-free then only the trivial identities hold in HSP9(AT)nATf. Thus we may 
assume that there exists such a maximal / which is also denoted by /. 

(To check that the F-identities determined by the systems of /»-identities below 
form a basis observe the existence of an /-free system (21, a) with 2l£HSP9(A')nA'F 
such that for arbitrary » = ( 5 , F)eHSPg(K)f)KF and b£B the mapping (p: 
can be extended to a homomorphism of 21 into S.) 

I. K* contains no /»-identities of form - m=n. 
I. 1. There is a /»-identity (k ,m)=(k ,n ) in K* with m^n. 
a) kt is minimal among all k occurring in /»-identities (k, m) = (k, n) from 

K* with m<n, 
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b) m1 is minimal among all m occurring in /»-identities m)=(k1, n) 
from K* with 

c) is minimal among all n occurring in p-identities (k1, m j = ( k 1 , ri) from 
K* with ml<n, 

d) k2 is minimal among all k occurring in nontrivial* p-identities (k, m) = 
= {k, m) from K*, 

e) m2 is minimal among all m occurring in nontrivial ^-identities (k1, m) = 
=(k1,m) from K*. 

Then a suitable basis can be given in form 

(fci, mj = (k!, nj, (kP, mi«) = (feW, mi1»), ..., (k£\ m<'>) = (k['\ m<'>), 

where k ^ = k 2 , m P = m 2 , < . . . < k ^ < k 2 + m 2 and k 2 +m 2 ^m^ 1 ) >. . .>m| r ) . 
(Note that ki,k2^l and ky+riy, k2 + m2>l.) 

I .2 . K* contains no p-identity (k,m)—(k,n) with m<n. Then there is 
a basis of form (kf>, m<r') - (kí,'L) ,m'f>),..., { k ' f , m'f>) = (k'f>, m ' f ) [kp = k2, 
m f ) = m 2 , ^ 1 ) <. . .< í : | r ) <fc 2 +m 2 , mir)~=:...<rtii1)^k2 + m2) where k2 and m2 are 
obtained by d) and e) in I. 1. 

II. K* has a p-identity m = n. 
Let WÍJ be minimal among all m occurring in p-identities m = n from K*. 

Moreover let k2 and m2 be given by d) and e) in I. Then one of the bases has the 
form 

m, = m1, mP) = (k?\ m™), <>) = (/#>, m|'>), 

where again k^=k2, m^r> = m2, k^ <... < k(
2
r> <k2 + m2 and k2+m2^.mip>...>mifï. 

If K consists of finitely many finite unoids then a finite basis can be given 
effectively. Therefore, for such a K and a finite 21=04, F) it is decidable whether 
91 is contained by HSPg(A')nA'F. 

Finally, it can be shown by a slight modification of the proof that the Theorem 
remains valid for infinite F, too. 
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On identities preserved by general products of algebras 

By Z . ÉSIK 

Equational classes of automata (i.e. unoids) obtained by general product were 
characterized in [1]. Here we present similar results for tree automata, i.e., arbitrary 
algebras. We show that the main result K** =HSPg (K)=HSPaa (K)=HSPPfa<i (K) 
in [1] remains valid in this generality, too. 

First we briefly introduce the basic notions to be used. For all unexplained 
notions coming from universal algebra and tree-automata theory the reader is referred 
to [3] and [2]. 

By a rank-type we mean an arbitrary subset R of the set of nonnegative 
integers. A type corresponding to a rank-type R is a collection of operational 
symbols F= a_(Fk\k^G) such that F^ 0 if and only if k^R. In the sequel we fix 
a ranktype R and by a type always mean a type corresponding to R. 

Algebras of type F constitute a similarity class j f F . An algebra is 
a pair (A, {fn\f^F}) — (A, F) for short —, where is a fc-ary operation on the 
nonvoid set A for any f£Fk. By a class of algebras we shall mean an arbitrary 
nonvoid class of algebras. 

We are going to deal with certain products of algebras. Let 7 be a nonvoid 
set linearly ordered by Given a system 91 ~(Ai, FJ (i£I) of algebras, by 
a general product we mean an algebra 21 = 04, F)=77(2i;, (p\i£I), where A = 
= n(Ai\i£l), cp is a family of mappings of [II(Ai\iel))kXFk into TJ((F^k\i^l), 
and finally, the operations in 2t are defined in accordence with cp as follows. 
Let <h, ..., ak, a£A,f£Fk. Then, /«(«!, ..., ak)=a if and only if = (/¡)ai, (a,;, ..., akl) 
holds for every /¿7 with fi=((p(ai, ...,£?,„/));=<£>; (al5 ..., ak,f). If for every 
nonnegative integer k, cp^cix, ...,ak,f) depends on / and ..., akJ with 
only, then 21 is a so called a0-product of the 2I;-s. We shall denote by Pg and Pao 
the operators corresponding to the formations of general and a0-products, resp. Pfao 
will denote the formation of finite a0-products. Finite a0-products will be written 
as 77(21!, ...,21„,<p) where 7 = {1, . . . ,«} with the usual ordering. The operators 
H, S and P have their usual meaning. 

Also we fix a countable set X = {xlt x2, ...} of variables and treat polynomial 
symbols of type F as trees built on X and F. TF will denote the set of all trees 
of type F. If 21 £JTf and pdTF then pm:Aa-^A is the polynomial induced by 
p in 2t. If a1,a2,... is an «-sequence of elements of A then p^iiflx, a2, ...) 
denotes the value of pn on ax,a2, .... If 21 is the general product described 
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previously then we can view q> as a mapping of (/7(A i \ i<LiyfX.TF into n(TFi\i£l) 
in a natural way. For each index /£ / we shall denote by <pf the i-th component-
map of <p, as well. 

The notion of subtrees of a tree p as well as the height h(p) of a tree will be 
used in an unexplained but obvious way. A subtree q of a tree p is called proper 
if q^p- sub (p) denotes the set of all proper subtrees of p. Also we shall in a natural 
way speak about an occurence of a subtree in a tree, and about the substitution 
of a tree for occurences of a subtree in a tree. If p is a tree then rt (p) denotes 
the root of p. 

By a relabeling we mean any mapping cp: TF-~TF, with the following properties: 
(i) if p£F0 then (p(p)£F'a, 

(ii) if p£X then (p(p)=p, 
(iii) if p=f(p!, ...,pk) with f£Fk, k>0, plt ..., pk£TF then there exist an 

f'£F'k such that <p(p)=f'((p(p1), •..,<?(/>*))• 
Now We are in the position to give the most fundamental definitions. Let 

K be an arbitrary class of algebras. Then K* = {KF\F is a type}, where KF is 
the set of all identities p=q (p, q£TP) such that (p(p) = cp(q) is in the usual sence 
a valid identity in KC)jfF, for any relabeling <p: TF—TF,. An algebra 216 .^ 
is in K** if and only if all identities belonging to KF are valid in 21. Thus, K**C\JTF 
is an equational class of algebras. If p,q£Tr, we write K*\=p=q to mean that 
Ktt=p=q. 

If we consider unoids, i.e. we take R— {1}, then for any type F and p, q£ TF 
we have p=q^KF if and only if p=q is valid in the equational class HSPXo(K)C\X'F.. 
Consequently, K**=HSPXo(K), or even, K**=HSPg(K)=HSPtlo(K)=HSPPflZo(K) 
(cf. [1]). 

In general, the first statement fails to hold. Indeed, take i?={l , 2} and for 
every type F let K f ] J f F be the equational class determined by the identities 
g(xJ=h(Xl) (g, Ii^Ft). Supposing f£F2, identity f{g(x^), g(xi))=f(h(x1), h^)) 
is obviously valid in HSPXo(K)nJi"F, but this identity is not in KF. However, 
we still have a somewhat weaker result: 

Theorem 1. Let p,q£TF be arbitrary trees of type F. Then p=q is a valid 
identity in an equational class HSPao(K)C\if and only if K*\=p=q. 

Proof. Sufficiency follows by observing that general product preserves K*, 
that is, P9(K)cK**. Therefore, also HSPaJK)^K**. In order to prove the 
necessity of our Theorem, let I contain those valid identities p=q of the equational 
class HSP„B(K)r\JfF for which our statement does not hold. Supposing 1=^0 , 
choose p — q ^ I in such a way that |sub (p)Usub (g)| is minimal. 

Now take an algebra 21=(/4, F) freely generated by the sequence ax,a2, ... 
in the equational class HSPao(K)C\tfF. First we show that if we have ra(a1 ; a2,...) = 
=s<a(a1, a2, ...) for some trees r, s£sub (p)Usub (q), then r—s, i.e., the trees 
r and s coincide. Assume to the contrary that there exist different trees r, s£ 
£sub (p)Usub (q) with ra(ai, a2, ...)=sn(al, a2, ...). Let us fix a tree r£sub (p)U 
Usub {q) with the property that if r£sub(p) Usub(q) a n d r « ^ ^ , ...)=rsa(a1, a2, ...) 
then h(r)^h(r), and there is a distinct tree s£sub (p)Usub (q) with r2i(al5 a2, •••) — 
=s<u(a1, a2, ...). Given r, choose a different tree 56sub (p)Usub (q) such that 
r<afax, a 2 , . . . )=% ( a i , a2>•• •)> a n d h(s)^h(s) whenever s€ sub (p)Usub (q) and 
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¿31(0!, a2, ...)=s®(a1, «2. •••)• Obviously, we have h(r)^h(s). If sub (p) then 
let us substitute r for any occurrence of s in p, and denote the resulting tree 
by p. If sub (p) then put p=p. Similar procedure when applied to q will 
produce the tree q. Of course we have sub (p) Usub (q) ^ sub (p) Usub (q), or 
even, the choise of r and s garantees that s$sub (p)Usub(q). Thus, |sub (p)U 
Usub (q)|< |sub 0 ) U s u b (q)\. Similarly, |sub (r)Usub (s)|<|sub (p)Usub (q)\. 

As rm(a1} a2, ...)=snÍai, a2, ...), it follows that r=s is a valid identity in 
HSPao(K)r\JfF. As |sub (r) U sub (s) | < |sub (p) U sub (q) | also K*^r=s. As 
r=s is a valid identity in HSPXo(K)f)JfF, also the equalities Paifai, a2, ...) = 
=Pn(al, a2, ...) and qn(ai, a2, ...) = q^(alt a2, ...) are satisfied. Since p=q was 
a valid identity in HSPa o(K)n^~F and 21 is freely generated by a l 5 a2, ..., also 
p=q is a valid identity in HSPXo(K)C\JirF. As [sub (p) U sub (q)| < |sub (p) Usub (q)\, 
by the choise of the identity p=q, we obtain that K*\=p=q. The construction 
of the trees p and q shows that {r=s, p=q}\=p=q. We have already seen that 
K*\=r=s, thus, K*\=p=q. This is a contradiction. 

So far we have shown that the equality r«¡(alt a2, ...)=s%(a1, a2, ...) is satisfied 
by trees r, sub(/?)Usub (q) if and only if r — s. Next we are going to prove that 
p = q£KF. As K*j=p = q holds in this case evidently, this would again be a con-
tradiction. 

Assume that p = q$_KF. Then there is a type F' and a relabeling cp: TF — TF, 
such that <p(p) = (p(q) is not a valid indentity in the class KOrfTp,. Therefore, 
there is an algebra <¡B = (B, F')£K and elements bx, b2, with 

(p(p)s>(bi> b2, ...) (p(q)<ts(bb2, ...). , 

Let G = (C, F) be any a0-product /7(21, 23, ip) with ip satisfying the following 
conditions for every f£Fk s 0): 

(i) * l ( / ) = / , 

(ü) "/^((PiM^i, «2, •••)» •••(Pkh(ai, a2 , ...), / ) = rt(<p(/(pi, ..., pk))) 

if f(Pi,---,Pk) is a subtree of p or q. 
In order to show that such an a0-product exists, it is enough to see that 

whenever both f(Pi,-..,Pk) and /(<7i, ..., qk) are subtrees of p or q and 
(Pi)^(a!,a2, ...) = (qi)ii(a1,a2, ...) (i=l, ...,k) then rt(q>(f(p1, ..., pk))) = 
= vt(q>(f(q1, ... qk))). But this can be seen immediately as cp is a mapping and 
OOaiOi, a2, ...) = (qi)m(a1, a2, ...) implies that 

As HSPX0(K) is closed under a0-products, we get Q.íHSPx¡>(K)f]JírF. On 
the other hand, <pG0s(¿>i, b2, ..^(piq^iK, b2, ...) implies that Pa^, bj), 
(«2> b2), bj, (a2, b2), ...), contrary to our assumption that p=q is 
valid in HSPX0(K)r\JfF. 

A set of identities A ^TF is called closed if whenever A \=p=q is valid for 
trees p, q£TF then p=q£A. It is known from universal algebra that A is closed 
if and only if the following five conditions are satisfied by A: 

(i) Xi = Xi£A (i = 1, 2, ...), 
(ii) p=q£A implies that q=p£A, 

(iii) p = q, q = r(iA implies that p = r£_A, 
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(iv) if P i = q £ A for all i = l , ..., k (A:^0) and f£Fk then f { p t , ..., p^ = 

(v) if p—q^.A and we get p' and q' from p and q by substituting all 
occurences of a variable xf by an arbitrary tree TF then p'—q'^A. 

By virtue of the previous Theorem, if KF is closed for every type F, then 
whenever p=q is a valid identity in an equational class HSPao(K)C\X'F then 
p=q£Kf. Conversely, if p=q£KF then p = q is a valid identity in HSPao(K)C\X'F. 
As KF always satisfies conditions from (i) to (v) above except (iv), a necessary and 
sufficient condition for KF to be closed is to satisfy condition (iv). In this way 
we get the following 

Corollary. Assume that KF satisfies condition (iv) for every type F. Then 
an identity p=q is valid in an equational class HSPao(K)r\^fF if and only if 
p=q^KF. Conversely, if we have the equivalence p—q is valid in an equational 
class HSP„JK)C)2fF if and only if p=q^KF then KF satisfies condition (iv). 

Further on we shall need the following 

Lemma. Let <H = (A, i7) = J7(9Ii, (p)\i(.I) be an arbitrary infinite a0-product 
of algebras 91 i = (Ah Fi) and let J<=,1 and T<=,TF be finite sets. For every 
sequence a1,a2,...(LA there is a finite a0-product ©=(-8, F) = i7(9l;, i/'l/C/j) 
with / c and such that \l/i(a1Jl, a2Jl, ..., p) = (pi(a1, a2, ..., p) for any p£T 
and i^J.1 

Proof. Put h—max {h(p)\p£T}. If h=0 then our statement is obviously 
valid. We proceed by induction on h. Let /z>0 and assume that the proof is 
done for h — 1. For every 0 and / € F t set 

Uf={p\p£T, h(p) = h, rt(p) =/}, 

Vf = {p\pi U(sub ( 9 ) | ? e r ) u r , rt (p) =/}. 

Let (p,q,i)£UfXVfXJ — say p =f(pi, ..., pk), q =f(q1 ,...,qk) — be arbitrary. 
If <Pi(Pim(ai, a* •••). •••>Pk%(ai.^z, •••),/)^<Pi(tfig,(«i, a2, •••), •••> a2, •••). / ) 
then choose an index j0</ with (/>,<¡,(̂ 1, a2, •••))i0^(q„u(ai, a2, ...))io for some 
t£ {1, ..., k}. Denote by 70 the set of indices obtained in this way, and put J'=J\JI0, 
T = U(sub 0>)| peT)U {peT\h(p)<h}. By the induction hypothesis, there exist a 
finite set J[ and an <x0-product 23' = (Bf, F) = 77(91,-, \l/'\i£j{) with J'c J[ and 
satisfying il/'i(aljr, a2j„ ..., p) = (pi(a1, a2, ..., p) for each p£T' and i£J{. 

Set and define the a0-product © = ( 5 , 70=77(91,-, so that the 
following two conditions are satisfied: 

(i) ^(¿i , ..., bk,f) — ̂ /'(b1, ..., bk,f) if f£Fk (k^0) and there exist trees 
Pi,-,Pk£TF with /(/?!, ...,pk)£T' and 6 ,=p ( S 8 , (a i v * 2 V •••) 0 = 1, —, k), 

(ii) ..., b k , f ) = (pi(c1, ..., c k , f ) if ¿'£7, f£Fk (&>0), and there exist trees 
Pu -,PkdTF with f(px, ...,pk)£Uf and bt=ptiS.{aij , a2j , ...), c,=pUu(au a2, ...) 
(t = l, ...,k). 1 ' 

1 The ordering on 7, is the restriction of the ordering on I to / j . If a£IJ(A,\i£f) then aJ_L f 
Ç is determined by (aJJ i = a l for any ; Ç7,. 
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Such an a0-product exist, since otherwise we would have an index iil together 
with distinct trees p=f(px, ..., pk)£Ur, q=f(ql, .... qk)£ Vf (f£Fk, k>0, pt, qt£TF) 
such that (ptm(ai,a2,...))j = (qm(a1,a2,...))j (t = 1, ...,k) for all j < i but 
<Pi(.PiJfli> a2> •••), •••» Pkn(ai, a2, -..)>/) ^ <Pi(?ia,(«i» a2, ...), •••> a2, ...)»/)• 
Also the equalities , a2j , ..., p) = (pi(ai, a2, ..., p) p£T) follow in an 
easy way. 

Theorem 2. HSPPfXo(K)=HSPXo(K)=HSPg(K)=K** holds for any class K of 
algebras. 

Proof. The last two equalities immediately follow by Theorem 1 and Birkhoff's 
Theorem. HSPPfa0(K)<gHSP„0(K) is obvious. We claim that also HSPao(K)c 
cHSPPj-^K). This can be seen by showing that if F is an arbitrary type and an 
identity p = q (p,q£TF) is not valid in PXo(K)HJfF then the same holds for 
Pfao(K)C\XF. But this is a trivial consequence of our Lemma. 

Theorem 2 is in a close connection with the characterization theorem of met-
rically complete systems of algebras in [2]. It turns out that a system K of algebras 
having finite types is metrically complete if and only if K* contains only trivial 
identities. In other words this means that K is complete (that is, HSPg(K) is the 
class of all algebras) if and only if K is metrically complete. 
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Deterministic ascending tree automata II 

B y J . V I R A G H 

To the memory of my Mother 

In [12] we started a systematic study of deterministic ascending (called also 
root-to-frontier or top-down) tree automata. The present second part is entirely 
devoted to the investigation of the product of such automata. We generalize the 
notion of the product of ordinary automata due to Gluskov [cf. 7] and that of the 
special products defined by Gecseg in [3]. Some other generalizations can be found 
in [9], [10] and [11] for the case of bottom-up (known also as frontier-to-root) tree 
automata. 

1. Preliminaries 

The reader is assumed to be familiar with the fundamental concepts concerning 
tree automata and tree transducers. To keep the size of the paper within reasonable 
limits we give only a brief account on notions defined elsewhere but used in our 
treatment, too. For terminology not defined here, see [1], [5] and/or [6]. 

The concepts of a type F, a deterministic ascending F-algebra = (A, F), 
a deterministic ascending F-automaton A = (2i, a', a) and the forest T(A) ^ TF Xn 
recognized by A are used in the same sense as in [12]. In the sequel F-algebra 
(F-automaton) means a deterministic ascending F-algebra (F-automaton). When 
F is not specified we speak simply about algebra and automaton. Furthermore, 
all algebras and automata are assumed to be finite and have no nullary operations. 

Now we shall introduce some additional terminology. \A\ denotes the cardi-
nality of the set A. A rank type R is a finite nonvoid subset of the set N = {1, 2, ...} 
of natural numbers. The type F has rank type R(F) = {n\F„7i0}. 

Let A = (2I, a', a), a = ( A a \ A">) and B=<©,6',b>, b=(£(1», ..., £<">) 
be two F-automata with the associated algebras 21 = (A, F> and © = (B, F>. 
Then © is called a subalgebra of 21 if B<gA and for all k(:R(F), f£Fk and 
b£B, fs"(b)=f!B(b)€Bk holds. The automaton A is connected if all states a£A are 
reachable from the initial state a' by suitable operations. (For a formal description 
see [5].) 

Next we recall some concepts and results from [5]. 

5 Acta Cybernetica VI/3 
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A homomorphism of the algebra 21 into S is a mapping cp: A—B such that 
(i) for all k£R(F), fdFk and ad A, f*((p(a))=((p(ai); q>(ak)), where 

(«!,..., ak) =/®(a). If, in addition 
(ii) q>(a')=b' and 

(iii) for all i = l, . . . ,« ; <p(A,)=B, and <p~1(Bi)=Ai hold, then q> is a homo-
morphism of the automaton A into B. In case of <p(A)=B we call 23 a homo-
morphic image of 21. If q> is also bijective then it is called an isomorphism. We say 
that 21 and © are isomorphic and write 2 l s © if there exists an isomorphism 
(p: 21—23. The same terminology is used for automata. 

A congruence relation of the algebra 21 is defined as an equivalence relation 
Q on A such that 

(i) for all k£R(F),f£Fk and a, a'dA, aga' implies atga[ where 
i = l , ..., k,f*(a)=(alt ..., ak) and ..., a'k). 

Moreover, Q is a congruence relation of the automaton A if the additional condition 
(ii) for all i=l,...,n and ad A, ad A^ implies ¿>(a)QA(i) 

holds. 

NOTATION. The two trivial congruences of 21 will be denoted by i = A X A 
and co = {(a, a)\adA}, respectively. 21 is simple if it has only trivial congruences. 

For any state ad A let A (a) denote the automaton (21, a, a). The state 
a is called a 0-state if r ( A ( a ) ) = 0 . We say that A is normalized if, for all 
kdR(F),fdFk and ad.A, either all of the components of (a) are 0-states or 
none of them is a 0-state. The automaton A is minimal if whenever 
r(A) = J(B). 

The following results are from [5]. 

Proposition 1.1. If B is a homomorphic image of A, then T(A)=T(B). 

Proposition 1.2. If the minimal automaton A is equivalent to the normalized 
and connected automaton B then A is a homomorphic image of B. 

In the rest of this paper we consider only algebras belonging to the class K(R) 
of all finite algebras of the fixed rank type R. Let F, F1, ..., Fk be ranked alphabets 
of rank type R and consider the i7'-algebras 2 i i =(^ i , F') (¡'= 1, ..., k). Further-
more, let 

^ ^ X . - X ^ X f - F X - X f ' 
k 

be an arity-preserving mapping, i.e., for every mdR,f£Fm and ad IJ iMa,/) = 
¡ = 1 

= ( / \ •••,/*) implies f'dFi„ 0 = 1 , ..., k). Then by the general product or, shortly 
G-product of 21!, ...,2Ifc with respect to the feedback function we mean the 

k k 
F-algebra 21=04, F)= 2tf[F, if/] with A= f f At and for arbitrary mdR, 
fdFm and ad A 

/"(a) = (fa(TfaCa))), •••, ni{fk(nk(a)))), ... 

• • -MPK(a))), • • •, ifk(nk(a))))), 

where (J1, ...,fk)= ij/(a,f) and 7t, denotes the Ith projection. 
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To define special types of products let us write i¡/ in the form i ¡ / = ( . . . , ip(k)), 
where for arbitrary a £ A and f£Fm, i^(a,/)=(i>(1>(a,/), ..., ^*>(a,/)). We say 
that 21 is an (¿¡-product ( i=0 , 1, ...) if for arbitrary 7 (1 ̂ j ^ k ) i¡/U) is independent 

k 
of its wth component if i+j^u^k. If \j/ is independent of [J Ah i.e., \¡/ is 

¡=1 
lc 

a mapping of F into J] F\ then 21 is a quasidirect-product (shortly 0-product). 
i = 1 

Let 0-product mean any of the a rproducts, the g-product or the G-product. 
Now take a class K of algebras. Then Hg(K) denotes the class of all algebras 
which can be given as homomorphic images of subalgebras of 0-products of algebras 
from K. Similarly, Jg(K) stands for the class consisting of all algebras which are 
isomorphic to subalgebras of 0-products of algebras from K. The class K is 
homomorphically (isomorphically) complete with respect to the 0-product if He(K) = 
=K(R) (lg(K)=K(R)) holds. Finally, K is forest complete with respect to the 
0-product if for every forest TQ TF Xn recognizable by deterministic ascending 
automata there exists a 0-product 21 = (A, F) of algebras from K and an auto-
maton A = (2I, a', a) satisfying T(A) = T. 

2. Some general properties of the products 

It is obvious that every isomorphically 0-complete system is homomorphically 
0-complete as well. For the converse we note 

Remark 2.1. For every 0 there exists a homomorphically 0-complete system 
MQK(R) which is not isomorphically 0-complete. 

To verify this statement take an arbitrary isomorphically 0-complete system M. 
Since IB(M) contains the one-element algebras there is an SH=(A, G)£M and 
an ad A such that 

(* ) for all r£r(G) there is a g€G r 

satisfying g(a) = (a, ..., a) 

holds. Now take the system M* = {2l*|2l£M} where 

21* = (AUB, G), B = {a*\a£A and a satisfies (*)}. 

The operations of 21* are defined for all g(LG, a£A and a*£B in the following 
way: g91* (a*)=gm (a) and 

8 w \ (a*, ..., a*) otherwise. 

Evidently, M* cannot be isomorphically 0-complete but it will turn out to be 
homomorphically 0-complete. 

Let (£=(C,H) be an arbitrary algebra. Assume that (£ is isomorphic to 
k 

a subalgebra D of the 0-product [J \j/] from M. Constructing the 0-product 
i = 1 

k 
J] 21* [H, [¡/*] from M* it is not difficult to prove that £ is a homomorphic 
¡=1 
5* 
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image of a subalgebra S* of this product. Here ift* is defined by \p*(a, h) = \j/(a, h) 
where § can be obtained 'by removing the stars', i.e., if 7t|(a)£A then 7^(3) = 
=7ti(a) else if ni(a)=a*€B then 7r,(a)=a for all i—l,...,k. 

For ordinary automata the notion of the completeness with respect to the 
automaton mappings have been introduced. (See, e.g. [4].) Now we shall define 
a similar concept concerning 'tree automaton mappings', i.e., top-down tree trans-
formations. 

In the sequel we shall use the general terms such as top-down tree transducers 
and top-down tree transformations induced by them, deterministic, connected or 
minimal transducers in their usual meaning (c.f. [1], [2] or [6]). 

A top-down tree transducer sl—(TFXn, A, TGtYm, A', Z j ) is uniform if 
each rule af~p(a£A, f£F„ l£R(F), p£TGi'Y^AZ) can be written in the form 
af—qiflxZx, ..., a,!;,) for some q£TGtYmUSl. In this section by a transducer si we 
shall mean a deterministic uniform top-down tree transducer having exactly one 
rule af-rp for every ( a , f ) t A X F . Moreover, all transducers are assumed to have 
the fixed input rank type R. 

Let s/= (TF,Xn,A, TGfYm,a', and & = (TF<Xn, B, TGyYm, b', Ia) be 
transducers and take a mapping q>: A -+B. If the following three conditions are 
satisfied for arbitrary af^-qla^, ..., a^,) and axt—t^Z^ then cp is called a homo-
morphism of si into 3t 

(i) if af^q(a^, ...,a,Z,)£Zj then 
b f - q ( b d i , where 
b=(p(a), bj—(p(aj) (J = 1, ..., /), 

(ii) if a x ^ t ^ Z s i then 
bXi—tdZa where 
b = cp(a), 

(iii) cp(a') = <p(b'). 
If cp is suijective then SS is a homomorphic image of si. 

The following result has been obtained in [2]. 

Proposition 2.2. If there is a homomorphism from si into ¿8 then 

The n-ary F-automaton A = ((A, F), a', a) belongs to the transducer sl= 
= (TF,xn> A, TG,Ym, a', ZJ) if 

(i) for all a£A, k£R(F) and f£Fk,fm(a) = (a1, ...,ak) imphes 
af-*p(a1^1, ...,ak£k)£Z* for some p£TG,Ymusk and 

(ii) for l^i^n, a£A(i> iff ax^q^Z^ for some q^TGYm. 
Aut (si) denotes the class of all automata belonging to si. Now we can 

introduce the class Alg (si) of all algebras belonging to si: 
11=(A, Alg (si) iff there is an automaton A = <21, a', a>£Aut (si). 
A system MQK(R) is complete with respect to the 0-product if for every 

tree transformation T: TFXn—TGYm there is a transducer si and a 0-product 
91 of algebras from M such that t = t ^ and 216 Alg (si) hold. 

In the proof of the following theorem we need the concept of the paths of 
a tree p. For arbitrary type F,n$_N and p£TF Xn, path (p) stands for the smallest 
subset of (FxN)* satisfying 

(i) if p=xt (l^i^n) then path (p) consist of the empty word e, and 
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(ii) if p=f(p1, ...,pk),k£R,f£Fk,p1,...,pk£TFtXn then 

path (p) = (J ( f , i) path (/>,-). 
¡=i 

Moreover, for arbitrary set TQTFtXn define p a t h ( T ) = U(pa th ( t ) \ t£T) . The 
realization of the path u€path (TFXn) in the F-algebra 21 = (A, F) is the mapping 
vm:A--A given by 

(i) aen=a for all ad A and 
(ii) av*=c iff v=u(f, i), aum=b and n¡{f(b))=c holds for 

M€path(rFiXn), k£R,f£Fk, ISi^k and b£A. 

Theorem 2.3. With respect to arbitrary 0-product the homomorphic complete-
ness, the completeness and the forest completeness are equivalent to each other. 

Proof (1) Let the system MQK(R) be homomorphically complete with 
respect to the 0-product. Further, let t be an arbitrary transformation induced by 
the connected transducer s/=(TFXn,A,TGY,a',IJ) and let A = (2I, a', a)£ 
e A u t ( ^ ) . 

As M is homomorphically 0-complete there exist a 0-product (£ = (C, F) = 
s 

= II [7% ip] from M and a subalgebra (£ of (E such that 21 is a homomorphic 
¡=i 

image of E under some homomorphism <p. Taking the subalgebra (E* of E 
generated by a c'd(p~1(a') it follows easily that A is a homomorphic image of the 
connected automaton C* = ((£*, c', c) under (p. (The final state vector c of C* 
can be given using the inverse of (p.) Let us consider the transducer 
V* = (TF,Xn, c*, TGiym, c', satisfying 

(1) cf^pic^x, ..., iff <p(c) = a, (Piic^ai (i = 1, ..., k) and 

(ii) cXi^-qdZig* iff <p(c)=b and 

for alt f£F,c£C* and l^i^n. 
This construction ensures that q>: is a homomorphism. Hence, by Pro-
position 2.2, But taking the transducer ^— (TFiXn, C,TG<Ym,c', 
where 

Z„ = Zv.\J(cf^g^c^, ..., C*,ftF,f'(c) = (clt ..., c*)), 

and qCtf is an arbitrary tree from TGiYmUEk) it is obvious that x>e=i>e*=T and 
(EgAlg ('ii) which proves the 0-completeness of M. 

(2) Now let M be a 0-complete system. Take an arbitrary algebra 2 1 = ( A , F ) 
with A=(a0, ax,..., a„_i). Without loss of generality we may assume «=-1. Choose 
a j£R and construct the algebra §L=(A, G> with G—F; if i ^ j and G}=F}\J{h} 
where h is a new operational symbol. For all g£G and at£A realize g such that 

g"(«<) = 
( a i + l (modn) ; •••» a i + l (modn)) i f S ~ h and 

j times 

g91 (a,) otherwise. 

Define the associated transducer s4=(TG Xl, A, TCYn, a0, I j ) by the following 
rules for all gdG and a ^ A 
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(i) a œ - ^ g i a ^ i , iff 
gai(a,)=(ai, - , a k ) and 

(ii) ( ¡ ¡ x ^ y ^ Z j . 
s 

The 0-completeness of M ensures that there exists a 0-product 23 = / / ©¡[G, I//] 
¡ = 1 

from M and a transducer 3§={TG<Xv B,TG Yn,b0, equivalent to s4 such 
that 93£Alg (âiï). Take the connected subtransdùcer @* = (TGyXl, B*, TGtYn, b0, Z®*) 
of S8 and the corresponding connected subalgebra 33* = (B*, G) of 23. Now we 
are going to prove that 21 is a homomorphic image of this 23*. 

To this end define the correspondence <p:B*^A by (p(b0uB*)=a0ua for 
every w£path (TGX). Since 23* and 2Î are connected cp is defined for all b£B* 
and (p(B*) = A. We claim that <p is a well defined mapping, i.e. b=b0um* = bQu®* 
implies u0w®=a0s® for all u, u£path (TGX<). Assume to the contrary that there 
are m, i;£path (rG Xl) such that b=b0u®*=b0v®* and at = au%^a0u2 = aj. 

The realization of h ensures the existence of trees p,qÇ.TGXi with the follow-
ing properties 

(i) M 6 path (p), uf path 
(ii) if z£path(p) then a0 z91 = at and 

if w£path (q) then a0wm — aj. 
Then we have 

(iii) fr(T„-00)e{j; i+1}*, fr M ? ) ) € f o + 1 } * . 
Taking two arbitrary trees p,q£TGtXl with w£path(p) and u£path(q) we can 
construct the trees p, q satisfying (ii) by substituting the leaves of p and q by 
suitable trees from T{h} X l . 

From the equivalence of si and 0S* it follows easily that the transducer 
38* is nondeleting. This, by property (iii) means that during the translation of 
p in SS* we have to apply some production bXl-*t where fr (/) £ {>';+1 }*. On 
the other hand, the translation of q requires a production bxx-+t with f r ( i )£ 
£{j'j+1}*. Hence, by the assumption a^cij the contradiction bxx-*t, bx^t^Z®* 
and tr^t follows. 

At last, by the definition of q> 

f(<p(bj) = /(«»»") = («o«(/, I ) 5 1 , - , a 0 v ( f , k)*) = 

= (<p{b0v(f, 1)®*), ...,<p{b,v(/, kT*)) = <p(m) holds 

for all u£path ( r C Xl), b = b0v**Ç.B*, k£R and / £ F k proving that <p is a homo-
morphism. Now it is evident that 21 is a homomorphic image under cp of the 

s 
subalgebra 23* = (B*, F> of the 0-product 23= /723,[F, \jj] where is the restric-

i=l 

tion of i¡/ to 1] BiXF. 
i = l 

(3) It is quite obvious that every homomorphically 0-complete system M is 
forest complete with respect to the 0-product as well (cf. Proposition 1.1). 

(4) At last, assume that M is a forest complete system with respect to the 
0-product. Take an arbitrary algebra il=(A, F ) with A = {a0, ..., a„_i}- Choosing 



Deterministic ascending tree automata II 297 

a new operational.symbol h and proceeding in the same way as in case (2) construct 
the algebra %. = {A,G). The definition of h ensures that the automaton A = 
= (9t, a0, {a0}> is connected and normalized. Moreover, by the proof of Theorem 8 
in [5] A is a minimal automaton since it has no two different equivalent states. 

The forest completeness of M implies the existence of an automaton C = 
i 

= (<£, c', c) equivalent to A where (£= JJH^G, \p) is a 0-product from M. As 
¡=i 

the realization of h results that every connected automaton equivalent to A is 
normalized and, even more, it has no 0-states, the connected subautomaton C* = 
= <(£*, c', c*) of C is normalized, too. Therefore, by Proposition 1.2 the minimal 
automaton A is a homomorphic image of C*. Now it is trivial that omitting h the 
algebra 21=(,4, F) is a homomorphic image of the subalgebra E* = (C*, F) 

t of the 0-product fi= JJ (¿¡[F, ip], where \p is the restriction of the feedback func-
i=l 

t 
tion \p to JJCiXF. • 

¡=i 

3. Complete systems with respect to some special types of products 

In this section we shall investigate the isomorphically 0-complete systems if 
9 = Q, a0 and G, and derive some properties of the homomorphically G-complete 
systems as well. 

For the sake of brevity let us introduce the relation 21 < a © iff 21 can be iso-
morphically embedded into a 0-product of © with a single factor. When 6 = Q 
we have 

Theorem 3.1. A system KQK(R) is isomorphically complete with respect 
to the quasidirect product iff for every simple algebra 21 there is a such that 
21 holds. 

Proof. The sufficiency of the condition can easily be derived from the transitivity 
of the relation -<g and from the following assumption 
(*) For an arbitrary algebra (E a simple algebra 21 satisfying £-<221 can be 

constructed. 
To verify (*), take the algebra (£=(C, F), C = {c0, ..., ck). We define the algebra 
2 l=(A ,G) as follows. The base set of 2t is the disjointunion A = CU {cfc+1,...,t-p-j}, 
where p is an arbitrary prime number with p — l>k. Suppose that j£R. In this 
case let Gt = F, for all j and Gj = Fj U {h} where h is a new operational 
symbol. The realization of the operations in 21 is given by 

ge(ci) if g £ F and 0 si i s k, 
(Cj, ..., q) if n£R, g£F„ and ¡ c < i S j i - 1 , 

n times 

(Ci + K m o d p ) . •••> C; + 1(modp)) if g=h and 0 = i i s i p - l . 
j times 
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The introduction of the new operation h guarantees the simplicity of 91. (E«<e2l 
follows evidently by considering the product 91 [F, i¡/] with the feedback function 
i / i ( / )= / for every f£F. 

Conversely, let K be isomorphically 2-complete. Hence for arbitrary simple 
k 

algebra 91=(A, F) there is a 0-product 23 = J] 23¡[F, \j/] from K such that 21 is 
i = ] 

isomorphic to a subalgebra of 23. Let q> denote a suitable isomorphism. Now 
we can introduce the relations £?f (l^i^k) on A in the following manner: 

aQib iff nj(cp{a)) = nj(q>(b)) for all U j S i. 
The fact that © is a Q-product yields that all the Qi are congruence relations and 

» ^ 6k = 

As 21 is simple, all this relations are trivial, i.e., there is a natural number m 
(1 ^ m ^ k ) such that 

3m = & 

holds. Now we proceed to show that in this case 2I-<Q©m. Take the g-product 
£=(Bm, F>=©m[F, £] with the feedback function <^(/)=7tm(i>(/)) for all f£F. 
It can immediately be shown that the mapping t]: A-*Bm defined by t}(a) = nm(<p(a)) 
for all A is an isomorphic embedding of 91 into S m . The choice of m ensures 
the injectivity of r). On the other hand, r\ is the composition of the mth projection 
with the isomorphism <p, hence t\ must be a homomorphism. 

Corollary 3.2. There exists no minimal isomorphically Q-complete system of 
algebras. 

Proof. Take an isomorphically g-complete system M g K(R) and an arbitrary 
G from M. We shall verify that the system M1 = M— {£} satisfies the conditions 
of Theorem 3.1 as well. Let © be a simple algebra. From the isomorphic complete-
ness of M it follows that ©<;Q9l holds for some 21 Now we claim that 
S«<Q2t holds for some 2i£M1; too. We distinguish the following two cases 

(1) If then we put 31=21. 
(2) In the case of 21=(E we can, by assumption (*), construct a simple 

algebra X) with |X>| and (i-<QT>. But M is isomorphically g-complete thus 
it contains an algebra © satisfying Of course, 2M0c hence <££MX and 
the transitivity of -<e implies ©<Q(E. • 

In the case of a0-products we can state similar results. 

Theorem 3.3. A system KQK(R) is isomorphically complete with respect 
to the a0-product iff for every simple algebra 21 there is a satisfying 2i-<aoS. 

Proof. The equivalence 21-<Q© iff 91-<tt0© combined with Theorem 3.1 
obviously implies the sufficiency of the condition. 

The proof of the necessity can be performed as in Theorem 3.1 so it will be 
omitted. • 

Inspecting Theorems 3.1, 3.2 and 3.3 we can infer that there exist no minimal 
isomorphically a0-complete systems. Moreover, a system KQK(R) is iso-
morphically ¿-complete iff it is isomorphically a0-complete. 

For isomorphic G-completeness we have 
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Theorem 3.4. A system KQK(R) is isomorphically complete with respect 
to the general product iff K contains an algebra 91=04, F) having two distinct 
elements ax and a2 such that for arbitrary r£R, {a1, a2} and a£ a2}r there 
exists an / £ F r satisfying f^(a)—a. 

Proof. Suppose that K is isomorphically G-complete. Let © = b2}, G) 
be an algebra such that for all r£R, b£B and bf {blt b2}r there exists a g€G> 
with g®(£)=b. Because of the G-completeness of K there is a G-product 91= 

k 
- II from K and a subalgebra 51 of 91 satisfying <p(©)=9i under 

¡=i 
a suitable isomorphism (p. Let (a{, ..., a'k) and (a", ..., ak) be the <p-image of bx 
and b2, respectively. Because of b^b2 an index j satisfying a] ̂  a'- can be 
selected. We shall prove that in this case the algebra 9lj fulfils the conditions of 
the Theorem. To this end take an r£R, a€ {a), a'-}, and a6 [a], a"}'. The algebra 
© satisfies the requirements of the Theorem as well. Hence it can be given a g€G r , 
b£B and b£B r with the properties g®(6)=b, nj((p(b))=a and (^(^(¿i)) , ... 
..., Tij((p(br)))=&. From these equalities we can conclude that the operation / = 
=i¡>U)((p(b),g)eFr

J satisfies / a i j (a) = a. 
Now assume that the elements au a2 of the algebra 11=(A, F)£K meet the 

requirements of the Theorem. Take an arbitrary algebra S = <5, G>. Choose an 
injective mapping (p: B—{fli, a2}k for a suitable k£N, and construct the G-product 
G = / 7 9 I , [ G , ^ ] where 9I ;=9l 0 = 1, ..., k). For all c=(c l f ..., ck)£Ak, r£R and 

g£G~let i)/(c,g)=(f\ ...,fk) be defined for all i=l,...,k by 

- - an f£F, satisfying /»(c.) = (cf, ..., d), 
if c = cp(b\ g»(6) = (6 1 , . . . , 6 r ) and <p(bj) = (d,...,.c{) 
for j = 1, ..., r, 
an arbitrary element from Fr otherwise. 

By virtue of this definition of the feedback function ij/ an easy computation shows 
that cp is an isomorphic embedding of © into the product G. • 

By Theorem 3.4, there exists an algorithm to decide for arbitrary finite K<^K(R) 
whether K is isomorphically complete with respect to the general product. 

Turning to the problem of homomorphic G-completeness we give a rephrased 
version of the known result from [8] for the case i ?={ l} i.e., for unoids. 

Proposition 3.5. A system is homomorphically complete with respect 
to the general product iff K contains a unoid 11 = (A, F ) having an element a, two 
operational symbols / i , / 2 and two polynomials px,p2 satisfying 

« 1 = fi(a) ^ / 2 0 0 =
 a2 

and 
/ > i 0 * i ) = />2 ( « 2 ) = a . 

This proposition implies that every minimal homomorphically G-complete 
system in A"({1}) is a singleton. The subsequent constructions show that this situa-
tion is bounded to the case R= {1}. 
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Let R={ri, . . . , 1} be an arbitrary rank type. For every r£R and 
1 S j ' ^ r take a two-element algebra Utrj-=({aJy, a2

rj}, Frj) having for every (m,n)£ 
6 (1, 2}2 exactly one r-ary operational symbol fm„£Fr

r
J such that 

/h 

(a?j,...,atj,...,a?j) if k = m 
(a*j, ..., ak

rj) otherwise 
and 

(**) g « 0 = (a™, ..., a?j) for all af£ArJ, g£F'J and 

hold. 
Lemma 3.6. The system K = {VlrJ\r(:R, l ^ j ^ r } is homomorphically G-

complete and minimal. 

Proof. Let £=({1 ,2} , F)£K(R) be an algebra satisfying 

F = U ( { / J J € { 1 , 2}, t € { l , 2 H | R I € I ? ) 
and 

t if s = k 

fs,(fc) = (s, s) otherwise 
ri times 

for all r£R and fst£Fri. 
Since the system {(£} is isomorphically G-complete to prove our lemma it is 

enough to show &£HC(K). To this end take the G-product 91 = </1, F) = 
= / J -Lj[-f, ip]- If then let v(a) denote the sum of the upper indices oc-

1 S j i r 

curring in a. For all r^R, fst£Fro 2irj£.K and adA,\p corresponds to fst the 
operation fsv£F'rJ. where 

(t) if rt = r and ( - l ) v w = ( _ i y j 

otherwise. - I ? 

Define the mapping <p\ A —{I, 2} in the following way: 

<p(.a)={l
2 

if v(a) is an odd number, 
2 otherwise. 

Now, using the previous definition of it can be proved that cp: is 
a homomorphism. 

Take an arbitrary algebra 91 ri£M. By virtue of the construction of M it is 
evident that 91 sj£M and (s,j)?i(r, i) implies for all and a£Asj, 7r ;(/(a))=a. 
From this assumption it follows directly that the system K— {91ri} is not homo-
morphically G-complete. • 

By similar methods one can prove 



Deterministic ascending tree automata II 301 

Theorem 3.7. Let s be an arbitrary natural number satisfying l ^ s S 

Then a minimal homomorphically G-complete system K consisting of s algebras 
can effectively be constructed. 

Finally we would like to remark that in the proof of Lemma 3.1 in [12] there is 
a mistake. Its correction can be found in [6]. 
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Decidability results concerning tree transducers II 

By Z . ESIK 

1. Introduction 

Let TQTFXTG be an arbitrary tree transformation induced by a top-down 
or bottom-up tree transducer A. It is said that A preserves regularity if T(R) 
is a regular forest for each regular forest R ^ T F . It is natural to raise the question 
whether the regularity preserving property of tree transducers is decidable or not. 
This question was positively answered for bottom-up transducers in [4]. Even more, 
it was shown that a bottom-up transducer preserves regularity if and only if it is 
equivalent to a linear bottom-up transducer. Concerning top-down transducers 
we have quiet different results. Although every linear top-down transducer preserves 
regularity as linear top-down tree transformations form a (proper) subclass of 
linear bottom-up transformations (cf. [2]), there are deterministic regularity pre-
serving top-down tree transducers having no linear bottom-up equivalent. Another 
distinction lies in the fact that there is no algorithm which can decide the regularity 
preserving property of top-down transducers (cf. Theorem 2). However, restricting 
ourselves to deterministic top-down transducers we obtain positive result (cf. 
Theorem 1). 

The notations will be used in accordance with [1]. Recall that a top-down tree 
transducer A=(F, A, G, A0, I ) is called uniform if each rewriting rule in I is 
of the form a/— qia^, ..., anxn) where w^O, f£F„, a, a±, ..-., a„£A and q€TG n. 
In addition, if q is always linear (cf. [2]) then A is called linear. These concepts 
extend to top-down tree transducers with regular look-ahead, as well. Further-
more, one-state top-down tree transducers and their induced transformations will be 
called homomorphisms. If A is a homomorphism then we omit the single state 
in the presentation of I . 
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2. Deterministic top-down transducers 

Let A = ( F , A, G, a0, I ) be an arbitrary deterministic top-down transducer 
kept fixed in this section. Put T = T a . If there exist 

n1,nt,m1,m2^0, a£A"', b£Am•, c £An', d £Am*, p0, p ^ f p ^ 

P*tTP, q0£TCini+mi, q ^ f ^ , RX€ qt€T&, r ¿Tp 
such that we have 

aoPo^> q0(ax"S, BX^) , 

a i Pi1 ̂  qi (cxi2), bxi 1 1 4 rx (dxro, 

C P 2 2 ^ > Q 2 , D P ^ 4 R 2 , 

{flil«e[nj} = fol^M, {Mi6[mj} = R l i e M , 
and both and r t contain an occurence of a symbol from G then we say that 
A satisfies condition (*) . Observe that our conditions imply that ni,mi>Q(i=\, 2). 

We are going to prove that A preserves regularity if and only if ( * ) is not 
satisfied by A. The necessity of this statement can be proved easily. 

Lemma 1. If A preserves regularity then A does not satisfy condition (*) . 

Proof. Assume that A satisfies condition ( * ). Then, using the notations of the 
definition above, set R—{p0(Pi{..(Pi(P2)).••))!"—0}- -R is regular and x(R) consists 

n-times 
of trees 9 o(r n , s n)(»sO, r„6rsss„€rs" ) with the property that n-=rn (r„)<rn (r„+1), 
n<rn (s„)<rn(s„+1)1. Suppose that X(R) is recognizable by a deterministic tree 
automaton D=(G, D, £>„). Let n>m 1 ( l+v(G) + . . .+v(G) | D |- 1) be an arbitrary 
fixed integer. As (<7o(r„, s„))D€Z>0 also there is a vector of trees Tg1 with 
dp (s)<|Z>| and (q0(rn, S))d£D0. However, as dp(s)<|Z>| we obtain that r n ( s ) S 
3=^(1+v(G)-K. .+v(G) | f l | - 1 ) . This contradicts X(R)=T(T>). Therefore, T(R) 
is not regular, as was to be proved. 

To prove the converse of Lemma 1 first we show that T(domr) is regular 
if A does not satisfy (*) . This will be carried out by constructing a linear deter-
ministic top-down tree transducer with regular look-ahead such that T(domr) = 
= tA '(dom TA')- The construction of A' will be made by the help of other tree 
transformations. Thus, we shall have the transformations indicated by the figure 
below: 

1 rn (r„) —rn (rn i)-f. . .-frn(rnni)j m(Sn) is similarly defined. 
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We begin with the definition of F". First let F= U Fn, F„= {(/, C, <p, ip)\f£Fn, 
nSO 

C^zB, (p: B-»P(A),\j/: A>->-A for a subset BQA}, i.e. q> is a mapping of B into 
the power-set of A and \j/ is a partial function on A. Now the type F" is defined 
by F: = FnUFn (ns=0). _ _ 

The F-depth (dp (p)) and F-width (\vd (p)) of a tree p £ TF,. are defined by 

dp(i>) = 0, wd(p) = wd0(p) = 0 if p£F0, 

d p ( p ) = 1, w d ( p ) = wd0(p) = 1 if p£F0, 

dp (p) = max {dp (p;) | i £ [n]}, wd (p) = max | J " wd0 (p,), wd (p;) | i £ [n]J, 

n 
wd0(p) = ^wdoip , ) if p = f ( P i , •••,P„) with n > 0, f £ F n , 

¡=i 

Pit ••••,Pn£Tp„, 

d p ( p ) = 1 + max {dp(p;)|i€[«]}, wd(p) = max {1, wd(/7;)|/fE[)i]}, 

wd0(p) = 1 if p = f(px, ..., p„) where n > 0, f£F„, 

Pi, •••,Pn£TF;. 

If n, m are given nonnegative integers then Tin>m) denotes the set of all trees p£TF„ 
with .dp (p)<n and wd (p)Sm. 

We shall frequently use an equivalence relation denoted by ~ on TF~. Given 
p, q£ TFr,, p~q if and only if one of the following three conditions holds: 

(i) p,q£TF, 
(") P=f(Pi, —,Pn), <l=f(<li, •••>9N) with N = 0 , / € F „ , ph and 

Pi~Qi ('€[«]), 
(iii) />=/\>(/>i, ...,P„), 4=4o(<7i, with «>0 , p0,q0eTFjn, Pi,q£TF„, 

rt (pd, rt {q^F 0'6[«]). 
If p£ TF, then [p] denotes the block containing p under the partition induced by 

The next statement can be proved in an easy way. 
Lemma 2. [p] is a regular forest for any p€ TF„. 

Now we introduce the transducer U. U=(F , U, F", u0, I") where 

U = {(5, B', C, <p, xp)\B QA,B'^B,CQB,(p:B^ P(A), ip: A >- A}, 

<30=({a0}, 0,0, q>, i//) with <p(.a0)={a0} and \j/(a)-b if and only if a=b=a0. 
I" is determined as follows. 

Let u=(B, B', C, (p,\jj) b e a n arbitrary element of U, f£F„(n^ 0). Assume 
that in I there is a rule with left side af for any U(p(B). That is, U (p(B) = 
= {%, ..., at, au, ..., ahl, ..., aln, ..., aln„} (I, lu ..., /„^0) and 

a j * ?i(b/ixi", . . . , [/]), 

d i j f + C i j X j i Z W l j ] , j i [ n ] ) , 
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where ku^0 ( i < m , M n ] ) , q ^ t G i i l - X , k,= ¿ k u (/€[/]), bu£Ak.j ( ig [ / ] , /€[«] ) , 

Then I " is the smallest set of top-down rewriting rules satisfying (i) and (ii) 
below. 

(i) If \{a£B\(p(a)n{a1,...,al}^0}\^2 or 

| {a£B'\<p(a)n{alt...,a,}*d}\*l o r 

|{a£.ff—C|<p(a)fl {a 1 ; . . . , a,} ^ 0}| £ 1 or 

| C | S 2 and |{a€.%(fl )n{ai , . . . ,a ,}*0} |s l and 
k, = (5, B', C', <p„ fa) (i€[n]), 

C' = {a6JS|<p(a)n{a1, . . . , a , } * 0 } , 

p,(a) = U(^ l |fl ie9>(a))U{c7i |aJi€v(a)} KM), 
where B}i denotes the set of components of the vector b7i (/€[/], /£[«]), \l/i(a)=b 
if and only if (/6 [«] ) , /=( / , C', <p, i>) then 

(ii) If not (i), i.e. / = 0 or 
/ = 1 , C = {ax} and 

and for each /£[«] 
U i =(5 , 5 ' , C, <p„ fa), 
(Pi is the same as in the previous case, 
¡¡/—ij/o^l with <j/'i(a)=b if and only if a=aJh b = c}i (j€[h])> 

then 

Observe that U is a deterministic top-down relabeling. The following pro-
perties of U will be used without any reference. First, if up=>q(y(xx, ...,*„)) 
(«2:0, u£U, v£Un) and p,q£TF<n then p=q. Secondly, let a£A k (k^O) be 
arbitrary and identify a with the state u-{B,B',%,(p,^i) where 5={ai|i'6[A:]}, 
B'={ai\i£[k], 3j£[k] i ^ j , (p(a) = {a) if a£B and ij/(a)=b if and only 
if a=b£B. Denote by aa the transformation TU(u) and similarly, put T0(=TA(0|) k 
(/'€[&]). Then, for any p£TF,p£domoa if and only if p £ n d o m r f l . . 

¡=i 
In the next few lemmata we shall point to further connections between A and U. 

Lemma 3. If A does not satisfy condition ( * ) then dp(<ra(p))<2|^|2||/4||2 

holds for any a£A k (k^O) and p£TF provided that aa(p) is defined and there 
exist trees r£fF1 and fG k with fl0r=>r'(ax*). 

' ' A 

Proof. Let L = |y4|2||/4||2 and suppose that a 0 r i - r ' ( ax£) and d p ( a a ( p ) ) ^ 2 L . 
Then and there exist p0,...,/>2L-i€i>,i> Pzl^Tf, q0, ..., 
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wx, ..., w2L€t/ such that 

P = PO{-• <J>2L)-), 1 = ?<>(••• £.)•••)> 
( * * apo=>?o(« i* i ) , 1*1) 0 = 1, . . . , 2 L - 1 ) , u2Lp2L=> q2L, 

u u o 

furthermore, rt(?,)eF, say, rt (?,) = (/¡, C f, <pu xj/;) (i = \, ..., 2L). Let £>!= 
Q i . - iUC 2 L . It is not difficult to see by the definition of U that 

for any i£[L] there exist indices j^k-, (jiy &;€[&]) with aJt, akl£Di. On the other 
hand, as Z, = |,4|2||/l||2, there exist -= /2 (L, i2£[L]) such that a}. =a<. , ak. = li ii 
= ak., Sh = Si2 and Ttl = Ti2 where Si and Tt are defined by Si=(p2i-1(aj.) 
and Ti={J((p2i-1(aJ)\j£[k],j9ij,). Without loss of generality we may take jh=jit=l 
a n d klx=ki= 2. 

As a nip) is defined also t ai(p) is defined for any i£[k]. Thus, if rx= 
=Po{-- (.PV1-2)---), r2=p2h-1(...(p2l2-2)..-), r3=^2 i2-i( . . .(^2 t). . .) then the derivations 

ai'-1=> si (cixj1), (a i , . . . ,a i k)ri-1:J-t1(dixi ,9, 

A A 

A A c 2r | | 24s 3 , d 2 r ^ 4 t 3 A A 

exist where s^tGini, t ¿ t f c ^ , s2£f£;„2, t 2 e f^ m 2 , s t a n d c £ A \ 
¿¡6A™> 0 = 1 ,2 ) . " " 

Since 1, 2£Z)j1 we have that both s2 and t2 contain an occurence of a symbol 
from G. Furthermore, as the sets Sh, Sh, Th and Th coincide with the set of 
components of c l5 c2, dt and d2, respectively, it follows that Ci and dx have the 
same set of components as c2 and d2. 

By 

a0 r 0 i ) f r' (Sl (cx xJO, ti (dx xi-0), 
A 

C i r ^ S a (c2 xj *), 12 (d2 xp), 
A A 

c 2 r 2 2 i s 3 , d 2 r ^ 4 t 3 

this yields that A satisfies condition (*) , which is a contradiction. 

Lemma 4. Let a£Ak (k^O) be arbitrary. Put B= {a;|i6[/c]} and assume that 

ap0 =>Po(u(xi, *„))> ap'0 =>p'0(u'(X, ..., x„)), 
U v ' U X 

up=>q, u'p'=>q', 
U U 

rt(q) = rt(q')CF" 
where n^O,p0,p'0iTF,„, p, p'£7%, q, q '€7>, u, u '£Un . 

Then n^\A\ and Tb(p0(p))=Tb(pi(p)) for any b£B. 

6 Acta Cybernetica VI/3 
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Proof. Suppose that rt (qd=(fh Ch <p„ \[/,) (/'€[«])• It is not difficult to see by 
the definition of U that for any /£[«] there is a state b£B with ^¡(¿0 being defined 
and bp0=> ipiifyXi- Therefore, n^\B\ and also n^\A\. Similarly, for each b£B 

A 
* * 

there is an integer /£[«] such that 4/,(b) is defined and bp0 => \pi(b)xh bp'0 => ^¡(Z;)*;. 
A A 

From this rb(p0(p))=rb(p'Q(p)) follows immediately. 

Lemma 5. Let a£Ak (A;>0) and define the set B as previously. Set B' = 
= i ^ j , Oi—aj} and assume that 

aPo(/G>i, •~,Pi-i,x1,pi+1, • . . ,£„))=> r 0 ( / ( r l 5 . . . . r ^ , i/Xj, r i + 1 , . . . , r j ) , 

* 

aPo(f(pi, •••. Pi-i, Pu••• > />n))^''o(/0"i> •••, K+i, •••. O ) . 

H?o =>• < 7 o ( v x j ) , uq'0=>q'0(v'..., x j ) , 
U v y U V 

* * 
vq=>s, v'q'^s'» 

D U 

rt(s) = rt(s0 €Fm, 
where «>0 , m^O, i£[ri\,p0,p'0£fFtl,f£FnJ=(fC, q>,\lj)fFn,Pj,Pj£TF, r0, 
rj, r'j£TF„ (/€["]-{'})> qo,q'o£TF<m, q, q s , s v , v ' € t / m . 

If | C | S 2 or C D 5 V 0 then x„(p0(f(p1,...,pi_1,q0(q),pi+1,...,pny)) = 
=^b{Po(f(Pi, -,Pi-i,q'M,Pi+i, -,Pn))) is valid for any b£B. If |C| = 1 and 
CC\B'=0 then we have the same equality for any b£B—C. Furthermore, m^\A\. 

Proof. Similar to the proof of Lemma 4. 

By succesive applications of the previous two lemmata we obtain 
* Lemma 6. Assume that ap=>-q where a £ A , q£7c, k^O. If ••• 
A 

• 
...~o ,a(/'t) then there is a tree p0ZTF with ca(p0)~(Ta(Pi) and ap§ => q. Further-

A 
k 

more, if r £ n d o m T a . then wd (tra(r))^ \A\. 
i=l 

Lemma 7. Let a£Ak (k^O), f£Fn («£0), b,7€^m<y (wl7i=0, /£[£], ./£[«]) and 
n 

m, mi= 2 mij)- Assume that each of the productions a j ^ 
j=i 

bax^1 , (/£[&]) is in Z. Furthermore, let />„/>,'€ 7V, c,=(bu> ...,bki) 
(/€[«]). Then a^pd-^ipd ('€["]) implies oa(f(pi, ...,pn))~<ra(f(pi, ...,p'S). 

Proof. The proof will be carried out in case of « = 1 only. As « = 1 we may 
simplify our notations: put p=p1, p'=p[, b—b,! (/'€[&]), 0 = 0!. Moreover, let 

B' = {ai\i£[k], 3Mk] a~aj}, C ={c,\i£[ 2 ntj]}, C ' = 
j = 1 

k k 
= { c № \ . 2 m j ] > i V / , c,=c,,}. J=1 J=1 
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k mt 
As p, p'(L Pi H dom rb¡. and the productions above exist also f(p), f(p')£ 

i = 1 j = l 
k 

£ f l dom xa¡. This implies that both c a ( / (p ) ) and <ra(f(p')) are defined. 
¡=1 

In the remaining part of the proof we shall make some transformations on the 
trees f(oc(p)) and f(oc(p')) by the help of a deterministic top-down tree trans-
ducer V = (F", V, F", v?, Iv)- In this transducer V = {u0}U {(Z), \¡/)\D g B, 
\¡/: A >—A} and ly consisits of the following five types of rules: 

(i) If qi = xi for every /€[£:] then 

® o / - / ( ( 0 , 

where iJ/(a)=b if and only if a=at and b=ba for an index i£[k]. 
(ii) If D = {ai\i£[k], q t ^ X j ) is not empty then 

Vof~(f,D, <p, </0((£>, 

where (p: B^-P(A), (p(a)={a}(a£B)m, moreover, \j/(a)=a if a£B, \j/(a) is undefined 
if a$B; ip1(a)=a if a£C, otherwise \¡/1 (a) is undefined. 

(iii) (D, iP)g^g((D, <P)Xl,..., (D, <A)x,)€Zv for any (D, i¡/)eV and g€F, ( / s0 ) . 
(iv) If (D, IJ/)£V, D'QC and either |D |>1 or J i l f i V 0 or • 

{a, | {babimi} fl D V 0 } * 2> then 

(D, ijf)(g, D', cp', i/O - (g, D", cp", r)((.D", <Pi)x1, ..., (D", MxfcZy 

fo r . any (g, D', cp', \I/')£F, ( / ^0 ) with <p':C^P(A) where D"= {a,|i€[*], 
m, 

{ i a , . . , U n f V 0 ) ; cp": B—P(A) and <p"(aj= [J <p'(bu) (i€[*]); 
j=i 

and i¡/ i(a)=b if and only if a=b and a occurs in the right side of a rule cg-~s£ I 
with c£ U(p'(C). 

(v) If (D,\I/)£V, D'QC, furthermore |/)| = 1, DDB^=0 and [a^k], 
{ba, . . . ,6 i m i}n .DV0}=Z> then for every (g, D', cp', i¡f%F, with cp': C-~P(A) 

• (D, D', cp', P) - g((A ..., (D, >h)Xl)av 

where ^i=i¡for\¡ and t]¡(á)=b if and only if ag-+bx¡£1. 
It can be seen that TV(f(oc(pj))=o¡í(f(pf) and xv(f(ac(p')))=<j:,(f(p')). On 

the other hand, by ac(p)~ac(p') it follows that T\,(f(ac(p)))^rv(f(ac(p'))). There-
fore, <ra(/(/?))~c7a(/(/)), as was to be proved. 

• We now turn to the definition of F'. For every integer i s 1 let K¡ denote 
the maximal number of occurences of the variable x¡ in the right side of a rule 
in I. Put ^R=max {1, A¡|ÍÉ[V(F)]}, F „ ' K = F „ (n^O) and F'm = 0 otherwise. 

As it was mentioned we introduce two homomorphisms QQTFXTF, and 
E'^TF'XTF connecting TF and TF,. The rules defining Q are / -» / (x f , ..., x*) 
(f£F„, N^O), while the rules corresponding to Q' are f-*f(xll,...,x¡) (/£F„, 
nSO) with ..., i„Í[nK]— [(« — 1)JC]. Observe that Q is deterministic and we 
have Q'(e(p))-{p} for any p£TF. 

We continue by defining the transducer A ' = ( F ' , A', G, a'0, E'). In this 

6* 
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system A'={(a,B, B')\a£B, BQA, B'QB), a'0=(a0, {a0}, 0 ) and I' is the 
smallest set of rewriting rules with the following property. 

Let / > 0 , B = {ai, ...,a^A, B' = {ami, ..., amJ ( l á m ^ . ^ m ^ / ) , a = 0l. 
Assume that the rules a , /—^(a^x í " , ..., afnx*'n) are in I where n^O, f(LF„, 

0, B,jeAku, q i £ f a , k n + . . . + ( ' £ [ / ] . [«])• Furthermore, let r>6r(2|/i |2 |M||2 , \A\), 
and set Rj= {p£TF,, | e ' (p)^f fb / (M)} (/£[«])> where b ; = ( a i ; , . . . , a ( ; , amjJ, ..., am(J). 
Rj is regular by Lemma 2 and some results in [2]. Finally, denote by B¡ the 
set of components of by and put Bj={b£A\b occurs at least twice in by} 0'€[«]), 
c¡j=a1{J (i£[n], j£[ku]), ki=klt(I€[H]). Then the rule 

((a, B, BT)f~ 9 l ( ( c u , B,, B[)xlf . . . , ( c l k l , Bx, B¡)xki, ... 

•••> (c„i, -S„, -60*(n-i)K + l) (cn*„> B^)x(n-1)K + kJ, 

Ri, ••••> Ri, •••, Rn, •••> Rn) 
it-times fC-íimes 

is in I ' . 
Observe that with the definition above A' becomes a linear deterministic 

top-down tree transducer with regular look-ahead. Just as in case of A" we may 
treat any vector a£A l — but now with / > 0 — as an element of A': if a£A' ( / > 0 ) 

9 then identify a with (au B, B') where 5 = {a¡|/6[/]}, B'= {a¡\i£[l], /,€[/] i j, a,=a,}. * 
Assume that ap=><? (p£TF,, q£Ta). Then one can easily prove that q'(p)g 

A' 
I 

Q P| dom Ta.. However, there is a much more close connection between A and 
¡=1 

A'. This is shown by Lemmata 8 and 9. In these Lemmata we shall assume that 
A does not satisfy condition (*) . 

Lemma 8. r ( d o m t ) Q r ' ( d o m t')-

Proof. We shall prove that if a0p0 <70(axí) and a p ' ^ q where &>0, p0zfF l 5 A A ' 
A * 

P£TF, Q0£TG K, q67c, a € A K then also aQ(J>)=> From this the statement fol-
' A' 

lows by taking p0=Xy. 
* 

If dpQ?)=0, i.e. p£F0> then &g(p) => is obviously valid. We proceed by 
A' 

induction on dp (p). Therefore, suppose that dp (p)=-0 and the proof is done 
for trees with depth less than dp(/>). Then p=f(pi, •••, p„) where f£F„, 
Pi>--->Pn^TF and dp fp¡)<dp (p) (/'£[«]). As the generalization to arbitrary n is 
straigthforward we shall deal with n = 1 only. Since ap* =>• q there exist rules 

A 

a j ^ r ^ x ^ l de[k], / t s 0 , r,£tBill,b£A'i) such that b;pi<4 s, and qt = r,(s,) 

hold for some s¡£Tl¿. Put l = lt+... + lk, b=(bx, ..., bfc), B = {b\b occurs in b}, 

B'={b\b occurs at least twice in b}. As a0p0(f(xi))=j> ^(^(bixi 1) , r*(bkxik))and 

bp[ =>• (Si, ..., s j we have that ab(p,) is defined, o^p^TillAfWAW2, ¡A¡) (cf. 
A 

Lemmata 3 and 6). Set /?={//£rf,|e'0')iiffb"1([<7b(/>i)])- By the construction of 
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A' we know that (af-^r^bn, B, B')x..., (blh, B, B')xh), R, ..., R) is in I. Now, 
X-times 

* if / 1 = 0 then we get aQ(p)=>qi immediately. If ^ > 0 then we obtain 
A 

* * (¿»u, B, B')g(p1) => ¿n, ..., (blh, B, B')g(p1)=> Sv by the induction hypothesis. 
A' - A ' 

* 
As g ip^dR we again have aQ(p)=>qi. 

A' 

Lemma 9. T' (dom T')QT (dom T). 
* 

Proof. We are going to show that if ap'=> q where (/>0) p'£TF,,q£TG 
A' 

then there exist trees r£7V» and / ^ ( ^ ( [ r ] ) with £'(/>') ^ ¡ T ^ l / ] ) and axp=>- q. 
If dp (/»')=0 then it is trivial: take p=p', r=cra(p). Assume now that this state-
ment is valid for trees with depth less than dp(p') and dp ( p ' ) s l . Then 
p'=f(p[,...,p'nK) («>0) with dp (p[), . . . ,dp (p'„K)<dp (p'). We shall restrict 

* 
ourselves to the case n=1. Since ap'=> q we get 

A' 

(a/-* <7o((6i, A . . . , (6,, B, B')xk),R, ...,R)er, 
K-times 

(bi,B,B')P;^qi ami p'iiR (»€[*]), 
A 

for some k (O^k^K), blt ...,bk£A, B, B'QA with ...,bk}QB, B'QB, 
q0efG,k, qi, qk£T0 and a regular forest / ? = { . ? 6 T F , | < ? ' ( > ) 1 (['i])} where 
r^Tf and c is an arbitrary vector containing one component ct for each element 
C; of B and a distinct component Cj for each element c} of B'. We have by the 
definition of A' that fli/—<70 ..., bKXD£Z. Furthermore, as Q'(P'I), ••• 
••••> Q'(PK)^<r7\[RI\), by Lemma 7 we have Q'(f(p[, •••, PK))^^1^]) for a suitable 
r£TF... 

If k=0 then let p£e'(p[) be arbitrary, p=f(p). axp^-q follows obviously. 
A 

By pee 'Gtf also f(PKQ'(f(p[,...,p'K)). Thus, p=f(p)£^\[r}). 
If k>-0 then there are trees ..., PtCo'<r1([''i]) with ¿ ^ j => ..., bkpk => qk. 

A A 

From this, by an application of Lemma 6, it follows that there is a tree p£<r71([r J ) _ * _ * * 
with bxp=> qx, ..., bkp => qk. Put p=f(p). Again, we have axp => q. On the other 

A A A 

hand, pGca"1^])- Indeed, let pi£e '(p0 be arbitrary. Then, as oc(p)—ac(p1), 
o'a(/(p))~o'a(/(Pi)) follows by Lemma 7. By / (pOdo^O/ ] ) this means that 

/ O D E F F . - T Y D -
Now we are ready to state the main result of this section: 

Theorem 1. A deterministic top-down tree transducer A preserves regularity 
if and only if ( * ) is not satisfied by A. The regularity preserving property of deter-
ministic top-down transducers is decidable. 
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Proof. The necessity of the first statement of our Theorem is valid by Lemma 1. 
To prove the converse suppose that A = ( F , A, G, a0, I ) does not satisfy condition 
(*) , and take a regular forest RQTF. R is recognizable by a deterministic tree 
automaton B=(F , B, B0). Without loss of generality we may assume that B is 
connected, i.e., for any state b£B there is a tree p£TF with (p)B—b. 

First let B0 be a singleton set, say B0={b0), and take the deterministic top-
down tree transducer A'=(H, AxB, G, (a0, b0), I') where H„={(f, bx, ..., b„)\ 
| / ( E f . , ^ , . . . , ^ * } («—0) 

r = {(a, b)(f, blt ..., bn) - q((ai, bh)xh, ..., (am, b j x j \ 

\m,n^0, a, al5 ..., am£A, bly ..., b„£B, h, ..., im€[n], 

iXtl, •••> amxim)eZ, b = (/)B(^i, &„)}• 

It is not difiicult to see that TA(i?)=TA'(dom Ta-). On the other hand A' does not 
satisfy (*) . By Lemmata 8 and 9, and the fact that linear top-down transducers 
with regular look-ahead preserve regularity (cf. [2], [3]), this implies that T a CR) 
is regular. 

The general case, i.e. when B0 is arbitrary, is reducible to the previous one. 
Indeed, if B={b1, ...,bn} then put Bi=(F, B, {¿»¡}), R—TiBi) 0'€[«])- Obviously, 

n 
t A ( R ) = (J rA( i?,) . As all the t a (7? ; ) are regular and regular forests are closed under 

>=i 
union, it follows that tA(R) is regular, as well. 

The second statement of Theorem 1 is a consequence of the first one because 
it is decidable whether (* ) is satisfied by A. 

As every uniform deterministic top-down transducer is equivalent to a non-
deterministic bottom-up transducer, by the characterization theorem for regularity 
preserving bottom-up transducers in [4], it follows that a uniform deterministic 
top-down transducer preserves regularity if and only if it is equivalent to a linear 
bottom-up transducer. In general, we do not know any similar characterization 
for regularity preserving deterministic top-down transducers. 

3. Nondeterministic top-down tree transducers 

In this section we prove 

Theorem 2. The regularity preserving property of nondeterministic top-down 
tree transducers is undecidable. 

Proof. Let H be an arbitrary type containing unary operational symbols 
only. Take a Post Correspondence Problem (a, P) (a, m>0) and choose 
/ in such a way that |<x,|, |/f,|-=f 0'€[m]). Set F 0 = { # } , F1 = [m] ( M f W = 0 ) , 
F=F0UF1, G0=F0, G1 = F1UHU {/} ( f ^ F ^ H ) , G2={g), G=G0UG1UG2. 
We shall give a top-down tree transformation TQTFX TG such that X preserves 
regularity if and only if (a, P) has no solution. 



Decidability results concerning tree transducers II 31.3 

Consider the top-down transducer A1=(F, {aQ, a2, b2, b3}, G, a0, Z) 
with Z consisting of the rules from (1) to (8) where i£[m]: 

(1) a0i - a0xt, 

(2) a0i - g(/(alXl), cciihxj), 2 

«oi - g(/(ai*i)> w(b2xj)) (w£H*, |w| == |a;|, w ^ a,), 

(3) a-Li - f(axXl), 

(4) bxi - ai(b1xj, bji - w(Z?2;q) (wGi/*, |w| S w ^ a,), 

(5 )b2i^w(b2x1) (wfE#*, |w| S a ; , w ^ «;), 

(6) a0i - g(a2x l5 wibsxj) (w£H*, 1 == |w| /), 

«oi - g ( / ( f l 2 ^ i ) , w ( b 3 * i ) ) ( w € # * , H < |w| 0 , 

(7) a 2 i ->• a 2 x 1 ; a 2 i — / ( a 2 x J , 

(8) fc3i - w(&8*,) (we/i*, |a,| == |w| S i ) , 

Denote T a , by -c1. It can be seen that consists of all pairs (J\ . . . / * ( # ) , 

g(fk~J(#), w(#))) where fcsl, wiH*, \w\r=kl and w?±aij+1... ccik. 
Similarly, a top-down tree transducer A2 inducing T2 can be constructed with 
T2 containing the same pairs as with the exception that w?±pi]+1...pik. Taking 
the disjoint sum of Ax and A2 we obtain a top-down transducer A inducing 
T = T 1 U T 2 . 

Assume that (a, P) has a solution. Then let z\... ik be a solution to (a, p) 
with minimal length. Put L={(i1 . . .4)"(#)|nS 0}, w=ocil...<xik(=pil...pik), T=X{L)R\ 
n{g(/ r(#),> t>(#))|rs0, »€#*}, i ?={g( / t o (# ) , w"(#))|n^0}. We are going 
to show that T=R. As the class of regular forests is closed under complementa-
tion and meet, furthermore, the forest {g( / r (# ) , t>(#))|r^0, v£H*} is regular 
while R is not, from this follows that %(L) is not regular. Since L is regular 
this implies that T does not preserve regularity. 

Suppose that g(/*"(#), w"(#))£r(L). Then there exists an integer r ( 0SnSr ) 
with g(/ f c n(#), w"(#))€T((/1...4)n(#)). Therefore, either w" ^ (a,v..aik)" or 
wn^Qih... fiik)n. As I1...4 is a solution to (a, P) both cases yield a contradiction. 
Thus, « i f . To prove the converse suppose that g ( / r ( # ) , t > ( # ) ) $ { g { f k n ( # ) , 
w"(#))j«&0} (r^o, veH*). Let »^max {r, \v\/l) be the least integer divisible 
by k, j1...jn = (i1...ik)n/k. If r is a multiple of k, say r = kt, then v^w', i.e. 
V7±a.Jr+1...c(.jn. If r is not a multiple of k then, as ik was a minimal solution 
to (a, P), jr+1.--jn is not a solution to (a, P). Therefore, either v^c/.jr+i...ajn or 

2 If Pis a unary type and v=f1,..fkiF* then wc denote by v the tree / i ( . . . (A(x 1 ) ) . . . )€ 7V,i 
as well. 
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Moreover, as n^\v\/l, in both cases \v\^ln. This together with 
« > 0 means that g ( f r ( ^ ) , v(t#))£x(j1...jn(#))Qx(L), as was to be proved. 

Next assume that (a, P) has no solution. Then x(L)={g(fr(#), u(#)) |rS0, 
v£H*}—{g(#, # )} holds for any infinite LQTF. Consequently, A preserves 
regularity. 
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An implementation of the HLP 

B y T . GYIMOTHY*, E . SIMON*, A . MAKAY** 

Introduction 

The Helsinki Language Processor (HLP) system was designed originally [7] 
for description of programming languages and for automatic generation of compilers. 
Saving the descriptional metalanguages different implementations have a great 
freedom with respect to the applications of parsing, semantic evaluation and soft-
ware generation technics. Our implementation chooses SIMULA 67 [1] as base 
language which influences the collection of semantic functions usable for description 
of semantic features and the structure of the generated compiler too. 

This text follows the steps of the generating process. A source language L is 
assumed which has a lexical description on the lexical metalanguage and a syntactic-
semantic description on that metalanguage of the HLP. 

There are two hand-written lexical analyzers for the metalanguages. One of 
them receives the lexical description of L and produces the input for the generator 
of the lexical analyzer of L. This will be constructed as a finite automaton. The 
other works on the syntactic-semantic description of L fundamentally in the form 
of an attribute grammar, producing the input for the semantic evaluator and for 
the pure syntax constructor. Because there may be different token class names and 
terminal strings in the lexical and syntactical description, unification of the symbol 
table of the generated lexical analyzer must be executed after that two lexical analysis. 
In the semantic description of L we can use attributes as SIMULA types involving 
simple types, classes, expressions, functions, statements and predefined standard 
procedures. 

Having the pure syntax of L, the parser generator checks the grammar being 
of type LR (1) [2]. If it is so it constructs the table of the optimal parser of type 
LR (1), LALR (1), SLR (1) or LR (0). 

We can choose one of the modified strategies ASE [3] or OAG [4] for computing 
the necessary passes and order of the evaluation of the attribute values in the gene-
rated compiler. For each syntax rule a SIMULA class is constructed, which contains 
the actions of parsing and evaluation decomposed to passes, anywhere this rule is 
applied in a derivation. One-pass compilation is possible if we have only synthesized 
attributes and it means, that the values of all attribute occurences are evaluable 
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during parsing bottom up. This is a sufficient condition and so a proposition with 
respect to the formulation of the grammar. 

By this means we have all components of the combined parser and semantic 
evaluator. Working under the control of the parsing table new objects of types 
predefined in the above SIMULA classes are created and connected as the deriva-
tion tree. Subsequent passes are executed by reactivating and deactivating the objects 
as the inner structures of the classes prescibe the evaluation order. 

The generators have the same structure as the generated compiler so there are 
possibilities to generate new variations of the lexical analysers and the parser by 
the system itself. We have written these parts of the HLPin the metalanguages of 
its own. 

Structure of the generated compiler 

The nucleus of the generated compiler (GC) consists of a parser based on a gram-
mar G from the class or subclass of the LR (1) grammars. It constructs the deriva-
tion tree in the grammar G from the token stream produced from the incoming 
text p£L(G) by the generated lexical analyzer GL. The nodes of the derivation 
tree are the SIMULA objects of types (SIMULA classes) representing the rewriting 
rules in the grammar G. Local pointers inside the objects ensure the connections 
— edges — toward the nodes on a lower level of the tree. 

The objects contain the local variables of the attribute occurrences too together 
with the calling sequence, which represents the attribute evaluation strategy pre-
defined from the attribute dependencies of the grammar G by one of the algorithms 
ASE or OAG. During parsing, when a new object is activated not only a new node 
is generated in the derivation tree (bottom up) but those attributes are evaluated, 
which depend on previously evaluated attributes. After that the object — the 
procedural part of the object — detaches itself while accessing the contents of the 
variables of the attribute occurrences just evaluated is possible. These are usable by 
the objects on a higher level of the derivation tree. Reactivating an object a new 
package of attribute occurences not evaluated yet is evaluable. Of course during 
evaluation this object activates other objects too- going up or down in the tree in the 
order of the strategy. After finite number of activating-deactivating action pairs 
an object together with all the objects on the lower levels have no attribute occurences 
not evaluated. This part of the tree is unnecessary so it is destroyed. Finally we 
have only the root of the derivation tree together with one or more attributes of 
the initial nonterminal of the grammar G. Generally these attributes serve the 
purposes of the target code generation. 

Of course we can describe and so generate not only a compiler for a programming 
language by an attribute grammar — as the metalanguage of the system — but other 
special purpose systems based on context-free languages too: schemes of data bases, 
machine architectures, picture description and processing, and so on. The common 
feature of these tasks is, that there exist a class of very similar algorithms, each of 
which we can specify by a context-free grammar together with several special 
attributes. The result is, that we have a generated software system specialized to one 
task only and the gain is in time or space complexity. It is the case of a compiler 
too: GC has a parser for one grammar and one strategy for the evaluation of a given 
attribute set. 
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Although it is possible to describe the generation of the target code by an attribute 
in the metalanguage too, we recommend a final pass for it based on the other attribute 
values evaluated earlier. Several procedures well defined for this purpose can help 
the users in that —. target language dependent — job. So far we have neglected 
this aspect because we need experiences in large-sized and complicated languages. 

Lexical metalanguage 

The lexical metalanguage is used to describe the lexical structure of the source 
language for automatic construction of the lexical analyzer which forms tokens from 
the character strings of the source program. A description on the lexical meta-
language consists of five parts. In the first part a collection of character sets is 
defined. Specification of token classes by regular expressions can be found in the 
second part. The description of transformations concerns characters and token 
classes too. Transformations are performed during the isolation of a character 
or tokens. In action blocks the scanning sequence, screening of keywords from token 
classes and the way the isolated tokens are sent to the syntax analyzer, are given. 

To give an idea of what a lexical description looks like we refer to the de-
scription of a simple block structured language called BLOCK HLP given in 
Appendix. 

The syntactic and semantic metalanguage 

The definition of an attribute grammar is divided into five parts. First the 
inherited and synthesized attributes must be defined by SIMULA types. It should 
be noted that the concept of global attributes was not implemented. Global 
attributes can be replaced by SIMULA objects. In nonterminal declaration those 
nonterminals are declared which appear in the production list as the left-hand side 
of at least one production. Each nonterminal declaration has a possibly empty 
attribute list associated with it. An attribute from this list is associated with all 
nonterminals appering in the nonterminal list. The third part of the description 
is the declaration of the start symbol. We assume the grammar to be reduced. The 
auxiliary SIMULA variables, classes, functions and procedures which are used in 
the semantic rules and code generation are declared in the procedure declaration 
part. 

As in the original HLP system we employ BNF (Backus Naur Form) description 
method for the syntax of the source language. Semantic rules and code generation 
are built in the productions. Note that if the semantic part is empty for one produc-
tion, then the use of ECF (Extended Context Free) description [5] on the right-
hand side is allowable. According to the SIMULA features the original notation 
of an attribute occurence is modified. In a production, if an attribute is associated 
to the left-hand side nonterminal, then only the attribute name must occur. Other 
attribute occurences are denoted by 

nonterminal name • attribute name. 
In Appendix the syntactic semantic description of the language BLOCK HLP can be 
found too. 
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Attribute grammars 

An attribute grammar (AG) can be considered as an extension of a context 
free (CF) grammar with attributes and semantic rules defining values of attributes. 
These attributes serve to describe the semantic features of the language elements. 

An AG is a 3-tuple 

AG = (G, A, F), 

where G=(VN, VT,P, S) is a reduced CF grammar, VN, VT,P and S denote 
the nonterminals, terminals, productions and the start symbol of the grammar 
respectively. 

A production p£P has the form 

p: X0^X1...XHp, where np 3= 0, X0£VN, X£V„\JVT (1 ^ i ^ np). 
The finite set A is the set of attributes. There is a fixed set A(X) associated with 
each nonterminal X£VN denoting the attributes of X. For an X£VN, p£P and 
a£A(X) X- a denotes an attribute occurrence in p. An attribute can be either 
inherited or synthesized, so each A(X) is partitioned into two disjoint subsets, 
I(X) and SOO-

The set 

Ap = (j U 
i=0 o€vi(X|) 

denotes all attribute occurrences in a syntactic rule p. 
The set F consists of semantic rules associated with syntactic rules too. A se-

mantic rule is a function type defined on attribute occurrences as argument types. 
For each attribute we have a set of attribute values (the domain of attribute) and 
for each semantic rule a semantic function defined on the sets which are related to 
its type. Formally, let us denote by Fp the rules associated with syntactic rule 
p, then 

F=[JFp. 
piP 

We classify the set Ap into an output attribute occurrence set 

OAp = {A'; • a |(i = 0 and a£S(X,)) or ( i > 0 and a€ /№))} 

and an input attribute occurrence set [6]. 

IAp = Ap—OAp 
We assume, that for each Xr OAp there is exactly one semantic rule fdFp the 
function related to it defines the value of Xt • a. An AG is in normal form provided 
that only input occurrences appear as arguments of the semantic rules. 
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Evaluation of attribute values 

Denote by i a derivation tree in the grammar G. If a node of t is labeled 
by X, then we can augment it by the attribute occurrences of X and their semantic 
rules defined by two syntactic rules. One of these is applied on the level over X in 
t and defines the inherited occurrences, while the other on the level under X deter-
mines the synthesized ones. Naturally, the root has no inherited and the leaves have 
no synthesized occurrences. (Leaves have attributes defined by the lexical analyzer 
which can be considered as synthesized ones.) A rule p, so an attribute occurrence 
may occur several times in t. We distinguish them and if it would be confusing 
we say occurrence in a tree t. Denote by TAG the set of the augmented derivation 
trees in AG. 

Let be given the set of semantic functions F associated with F. The value of 
each attribute occurrence in t is computed by one of these functions and it is 
computable only if the argument values are computed. Therefore we have de-
pendencies among attribute occurrences in the tree t. We denote by (Xt •a—Xj-b) 
the fact, that the function defining the value of Xj • b in t has the value of Xra 
as an argument. We say that Xj • b depends on Х{-а in t. By this relation the 
set F and the tree t induce a dependency graph D,. If D, has no cycle it deter-
mines an evaluation order for the computation of the values of all attribute occur-
rences in t. An attribute grammar is noncircular if there is no derivation tree with 
dependency graph containing a cycle. The decision whether an AG is noncircular 
requires algorithms of exponential complexity. 

To determine the dependency graph to each derivation is time-consuming 
during compilation. For several subclasses of AG's it is possible to determine an 
evaluation strategy based on the grammar only. Such a strategy consists of an 
ordering of the attribute occurrences in the rules of the grammar in the form of 
a dependency graph D and means, that wherever an occurrence X • a appears 
in any tree t, it is computable if the occurrences on which it depends by D are 
already evaluated. The problem is determine D from the AG. During compila-
tion we have to follow the evaluation order defined by D for each derivation tree. 
Naturally it is a tree traversal strategy and one travers may be seen as a pass of 
the compilation. 

Two subclasses of AG's are considered in our system in accordance with them 
two algorithms, ASE and OAG serve to generate evaluation strategies. 

ASE 

The ASE algorithm is based on a fixed tree traversal strategy. An AG is ASE 
if any td G is evaluable during m alternating depht-first, left-to-right (L—R) 
and depht-first right-to-left (R—L) tree traversal passes. 

The attribute evaluation during an L—R traversal can be illustrated for a syn-
tactic rule p: X^X-l ... X„p as follows. 

PROCEDURE TRAVERSE (X0); 
BEGIN 
FOR i : = 1 STEP 1 UNTIL np DO 
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BEGIN EVAL (/(Z,)); TRAVERSE (X¡) END; 
EVAL (S(Z0)); 
END OF TRAVERSE; 

During an R—L pass the FOR statement above has the form 
FOR i : = n„ STEP - 1 UNTIL 1 DO 

The ASE algorithm makes a membership test for an AG by this traversal procedure, 
and assigns attributes to passes. By the EVAL procedure we denoted the computa-
tion of the values of the attributes. The different instances of the same attribute 
is evaluated during the same pass. 

Our experiences show that the ASE subclass is large enough and can be applied 
well in a compiler writing system. But it needs some modification in the original 
algorithm to use it in a practical system. For example we need not traverse a subtree 
during the ¡th pass if there is no evaluable attribute in this subtree. It can be decided 
by the following test. 

Denote H(X) the set of nonterminals which can be derived from an Xd VN. 
It is easy to generate these sets by the transitive closure using P. 

Let K(X) = (J A(Y), and denote by A} the set of attributes which can be 
YÍHÍX) 

evaluated during the jth pass. 
If (K(X)US{X))C)Aj=0, then for an X¡=X we will not call the TRA-

VERSE (X¡) during the jth pass. 
In the ASE algorithm the tree traversal and the attribute evaluation starts from 

the root of the derivation tree. In our system we use bottom-up tree constructor 
and many synthesized attributes can be evaluated interleaved with the construction 
of the derivation tree. These synthesized attributes can be easily assigned by the 
TRAVERSE procedure often decreasing the number of evaluation passes of an AG. 

We can ensure an efficient space management technique for a generated compiler 
by using an extended version of ASE algorithm. We test for each p £ P whether 
after the rth pass the attributes of the subtrees which can be derived from p are 
computed or not. If each of them are computed we generate a statement for the 
rule p which releases these subtrees. This technique is based on a garbage collector 
and is very efficient, because large parts of a derivation tree are released during 
the construction of the tree. 

The ASE algorithm is pessimistic in the sense that it considers all dependencies 
for an attribute a. E. g. there are dependencies for an attribute a in the rules p and 
q, but there is no derivation tree containing the rules p and q together. Generally 
this does not occur in practical programming languages but it causes problems in 
some types of languages. Whether there is a derivation tree containing the rules 
p and q together may be decided by a simple algorithm using the sets H(x). 

OAG 

In this section we give a short description of the OAG algorithm using some 
notations of [4]. We modified this algorithm, so an attribute evaluation strategy 
is given for a larger subclass of noncircular AG's. The time needed for the modified 
algorithm does not significantly differ from the time needed for the original algorithm. 
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As opposed to ASE algorithm in the OAG algorithm there is not a predefined 
tree traversal strategy. For each AG6 OAG an attribute evaluation strategy is 
generated, and all derivation trees of the AG can be evaluated by this strategy. The 
OAG algorithm for each X£ VN constructs a partial order over the set A(X), 
such that in any derivation tree containing X its attributes are evaluable in that 
order. 

Denote by DS (X) the partial order over the A(X), and let 

D S = U DS(JT) 

be the set of these partial orders. 
We define dependency graphs over the attribute occurrences of syntactic rules 

and over the attributes of nonterminals, finally we construct DS using these graphs. 
The dependency graph DP p contains the direct dependencies between attribute 

occurrences associated to a syntactic rule p. 

DPp = {(Xt • a — Xj • b) | there is an f£Fp defining Xj-b depending on Xi • a} 

DP = U DPP 
Pi? 

The dependency graph IDP can be constructed from the DP 

IDPp = DP^ U {(Xi • a - Xi • b)\Xt occurs in rules p and 

-q, (Xra-+Xrb)eIDP+}, 

where IDP+ denotes the nonreflexive, transitive closure of IDP,. 

IDP = U IDP, 
piP 

The graph IDP comprises the direct and indirect dependencies of attribute oc-
currences. For an Xf VN the dependency graph IDS (X) contains the induced 
dependencies between attributes of X 

IDS (X) = {(Z- a^X-b) | there is an Xt = X in a rule p and 

(Xra -+Xi-b)elDPp} 

IDS = |J IDS(Z). 
xzVn 

The set DS can be constructed using IDS. For an Xd VN the set A(X) is partitioned into 
disjoint subsets A(X)h and DS ( X ) defines a linear ordering over these subsets. The 
sets A(X)i are determined such that for an a£A(X)i if (X • a-~X • b)£lDS (X) 
and b£A(X)k, then k^i. The sets A(X)i consist of either synthesized or inherited 
attributes only. The DS (X) defines an alternating sequence of the synthesized and 
inherited sets A(X)i. 

DS(X) = I D S ^ U P ' a - X- b)\X- a£A(X)k, X- beA(X)kh, 2 S k ^ MX}, 
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where mx is the number of the sets А(Х)(. The extended dependency graph EDP 
is defined by IDP and DS. 

EDP, = IDPpU • a - X, • b)\(X-a — X- DS (X), 

Xi = X and Xt occurs in rule p} 

EDP = (J EDPp. 
per 

A given AG is an OAG iff the EDP is noncircular. We implemented the OAG 
algorithm as a part of our compiler writing system. We have favourable experiences 
using the algorithm, but we have found simple attribute grammars (occurring in 
practical applications, see Fig. 1), where the IDP is noncircular but the EDP is 
circular. We modified the OAG algorithm so that in these cases we generate a new 
EDP. 

The graphs DP, IDP, IDS. DS are computed using the original algorithm. 
In the next step for each X£VN and (X- a—X- b)£DS (X)—IDS (X) we add 
(X-a^X-b) to IDPp , if X occurs in rule p, and construct IDP+. If a (Yc^Yd) 
is induced in IDP+, then 

(a) if (Y<f-y-c)(EDS(Y)—IDS(Y), then we add (Y c^Y-d) to IDS (Y) 
and generate a new DS (Y) using the modified IDS (Y), 

(b) if (Yrf— Yc)6 lDS (Y), then the algorithm is finished and the given 
AG is not an OAG, 

(c) otherwise we have (Y c—Y-d) out of consideration. 
If each (Z-a -Z-6 )£DS(Z)—IDS(Z) is added for an X£VN, then the 

set DS (X) is not changed later on. 
In Fig. 1 we show an AG which is neither ASE nor OAG but for which an 

attribute evaluation strategy can be generated using the modified OAG algorithm. 
We denote by о an inherited attribute and by • a synthesized one. 

The dependencies in rule 2 show that AG $ ASE. We construct the sets A(Y)t 
and A(Z\ using the rules 1, 3, 5. The sets A(Y)1 = 0, A(Y)2 = {e,g}, A(Y)z={f) 
and A(Z)1 = {/}, A(Z)2={e} imply that (У-/—Г-e)£DS (У) and ( Z - e - Z - / ) € 
6DS(Z). If we construct EDP3 by DS (y ) and DS (Z) it will be circular, so 
AG $ OAG. Using the modified algorithm, if we add (Y-f^Ye) to IDP3, 
then (Z- /—Z-e) is induced in IDS(Z). The new DS (Z) is constructed from 
the sets A(Z\ = 0, A(Z)2={e), A(Z)3={f} and the EDP is generated by this 
DS (Z) will be noncircular. It is easy to prove that for an AG£OAG the modified 
algorithm does not change the set DS and graph EDP. The OAG algorithm for 
each p£P generates a visit-sequence VSP using the graph EDPp . Each VSP is 
linear sequence of node visits and attribute evaluations and it is easy to generate 
an attribute evaluation strategy using the sets VSP. 
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Construction of the parser 

In the present paragraph the logical description of parsing automata constructor 
modul is given. This modul serves to compute the state transitions for finite state 
and stack automaton too. The definition of the token classes by regular expressions 
and the description of an ECF grammar are coded uniform manner. Consequently 
the procedure which computes the parsing states can be controlled at the job control 
level to generate finite, ELR (1), ELALR (1), ESLR (1) or ELR (0) [2] states too. 
The states are represented by SIMULA objects based on the following declarations. 

CLASS ITEM (NO, DOT, RSET); 
INTEGER NO, DOT; REF (SET) RSET; 

BEGIN 
REF (ITEM) LINK; 
END ITEM; 

CLASS SET (BOUND); 
INTEGER BOUND ; 

BEGIN INTEGER ARRAY TSET [0: BOUND]; 
END SET; 

It is easy to see that this representation has two advantages. The finite and LR (0) 
states which have no follower set can be stored uniform manner. Secondly, those 

7 Acta Cybernetics VI/3 
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items which have the same follower sets store only one SIMULA reference to an 
object in which the followers have been written. If the computed state is equal 
to a state which has been computed earlier then the SIMULA run-time system releases 
the space by calling the garbage collector. For each computed state there is a table 
which contains a set of ordered pairs. The first element describes the state number 
from which this state has been derived. The second element contains the symbol 
code used to compute the considered state. 

By applying the next theorem from [2] to our parser constructor we can obtaine 
an useful conclusion. An ELR (0) language can be parsed by a finite state automaton 
iff there is no state which can be derived by a nonterminal from more than one state. 
Hence, in order to generate a finite state automaton the ELR (0) states are computed 
first. It is followed by performing the finite state test. 

After computing the selected type of states (ELR (1), ELALR (1), ESLR (1) 
and ELR (0)) a membership test will be performed together with parser code gene-
ration. If it produces true then the next type of states will be computed from the 
last states. The test are performed from ELR (3) to ELR (0). Some simple optimi-
zation procedure are executed during the tests. In the present version of our imple-
mentation there is no automatic error recovery procedure. Ordering of states on 
the base [8] an efficient error correcting algorithm is under development. 

The states and the internal code of the lexical analyzer as a finite automaton 
are generated by the same modul. Of course we need additional service routines 
working in the lexical analyzers. These are written for metalanguage purposes, 
but they can be used in the generated compilers in the same form too. 

Appendix 

% LEXICAL DESCRIPTION FOR A SIMPLE BLOCK STRUCTURED 
% LANGUAGE 
% CALLED BLOCKHLP 
LEXICAL DESCRIPTION BLOCKHLP 
CHARACTER SETS 

LETTER0R_DIGIT=LETTER/DIG1T; 
END OF CHARACTER SETS 
TOKEN CLASSES 

UNDERSCORE = ; 
1DENTIFIER=LETTER (LETTERORDIGIT/UNDERSCORE) * [16]; 
PROPERTY = DIGIT + [2]; 
COMMENT * ANY* ENDOFLINE; 
SPACES =SPACE* ENDOFLINE; 
SPACES = S P A C E + ; 

END OF TOKEN CLASSES 
TRANSFORMATIONS ARE 
UNDERSCORE = > ; 
END OF TRANSFORMATIONS 

ACTBLOCK: BEGIN 
IDENTIFIER=> IDENTIFIER / KEYSTRINGS; 
PROPERTY PROPERTY; 
COMMENT ; 
SPACES = > ; 

END OF ACT BLOCK 
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END OF LEXICAL DESCRIPTION BLOCKHLP. 
FINIS 

% SYNTACTIC-SEMANTIC DESCRIPTION OF BLOCKHLP 
ATTRIBUTE GRAMMAR BLOCKHLP 
SYNTHESIZED ATTRIBUTES ARE 

REF (SYMB) SYMREF; REF (SDECL) SEREF; 
INTEGER ID, TYPE, EXTYPE; 

END OF SYNTHESIZED ATTRIBUTES 
INHERITED ATTRIBUTES ARE 

REF (SBL) SYMT; 
END OF INHERITED ATTRIBUTES 
NONTERMINALS ARE 

PROGRAM; 
BLOCK HAS SYMT, SYMREF; 
STATLIST HAS SYMT, SYMREF; 
STAT HAS SYMT, SEREF; 
IDECL HAS ID, TYPE; 
EXDECL HAS SYMT, EXTYPE; 

END OF NONTERMINALS 

% PROCEDURES AND CLASSES 
$$$$ 

CLASS SBL (A, B); 
REF (SBL) A; REF (SYMB) B; 
BEGIN 
END OF SBL ; 
CLASS SYMB (A, B) ; 
REF (SYMB)A; REF (SDECL)B; 
BEGIN 
END OF SYMB; 
CLASS SDECL (A, B); 
INTEGER A, B; 
BEGIN 
END OF SDECL; 

PROCEDURE FIND (A, B, C); 
NAME A; 
INTEGER A, B; REF (SBL)C; 
BEGIN 

% The value of A will be the type of the variable B. This type is tried to find 
% in the list of identifiers defined by C • B. If B is not found in it, then C is replaced 
% by C-A. Repeating until having the type of B or being the list empty, the 
% requested value is done or A is undeclared. 

END OF FIND 

% END OF PROCEDURES AND CLASSES 
PRODUCTIONS ARE 

%1% 

7* 
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PROGRAM = BLOCK; 
DO 

BLOCK.SYMT :— NEW SBL (NONE, BLOCK.SYMREF); 

END 
%2% 
BLOCK = STATLIST; 
%3% 
STATLIST = STATLIST STAT; 
DO 

SYMREF :— IF STAT.SEREF = / = NONE THEN 
NEW SYMB (STATLIST.SYMREF, STAT.SEREF) ELSE 

STATLIST.SYMREF; 
END 
%4% 
STATLIST = STAT; 
DO 

SYMREF :— IF STAT.SEREF = = NONE THEN NONE 
ELSE NEW SYMB (NONE, STAT.SEREF); 

END 
%5% 
STAT = IDECL; 
DO 

SEREF :— NEW SDECL (IDECL.ID.IDECL.TYPE); 
END 

%6% 
STAT = EXDECL; 
DO 

SEREF :— NONE; 
END 
%7% 
STAT = BEGIN BLOCK END; 
DO 

BLOCK.SYMT :— NEW SBL (SYMT,BLOCK.SYMREF); 
SEREF :— NONE; 

END 
% 8 % 
IDECL = DECLARE IDENTIFIER PROPERTY; 
DO 

ID := IDENTIFIER.VALUE; 
TYPE := PROPERTY.VALUE; 

END 
%9% 
EXDECL = USE IDENTIFIER; 
DO 
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EXTYPE <=FIND (EXTYPE,IDENTIFIER.VALUE,EXDECL.SYMT); 
END 
END OF PRODUCTIONS 
END OF ATTRIBUTE GRAMMAR 

% SIMULA classes associated with two nonterminals and a production in the 
% generated compiler 
NODE CLASS GRNODE 1; 

BEGIN COMMENT PROGRAM; 
END; 

NODE CLASS GRNODE 2; 
BEGIN COMMENT BLOCK; 
REF (SBL) SYMT; 
REF (SYMB) SYMREF; 
END ; 

GRNODE 1 CLASS P 1; 
BEGIN COMMENT PROGRAM; 
REF (GRNODE 2) BLOCK; 

BLOCK: — POP QUA GRNODE 2; 
PUSH (GOTO (1), THIS NODE); 
DETACH * 
BLOCK.SYMT:— NEW SBL (NONE, BLOCK.SYMREF); 
CALL (BLOCK); 
DETACH; 
END ; 
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