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Preface 

The 4th Conference for PhD Students in Computer Science (CSCS) was or-
ganized by the Department of Computer Science of the University of Szeged 
(SZTE) and held in Szeged, Hungary from July 1 to 4, 2004'. The members 
of the Scientific Committee were the following representants of the Hungar-
ian doctoral schools in computer science: Mátyás Arató (DE), András Benczúr 
(ELTE), Miklós Bartha (SZTE), Tibor Csendes (SZTE)', János Csirik (SZTE), 
János Demetrovics (SZTAKI), Sarolta Dibuz (Ericsson), József Dombi (SZTE), 
Zoltán Esik (SZTE), Ferenc Friedler (VE), Zoltán Fülöp (SZTE), Ferenc Gécseg 
(chair, SZTE), Tibor Gyimóthy (SZTE), Balázs Imreh (SZTE), János Kormos 
(DE), László Kozma (ELTE), Attila Kuba (SZTE), Eörs Máté (SZTE), Gyula 
Pap (DE), András Recski (BMGE), Endre Selényi (BMGE), Katalin Tarnay 
(NOKIA), György Túrán (SZTE), and László Varga (ELTE). The members of 
the Organizing Committee were Balázs Bánhelyi, Tibor Csendes (chair), Tünde 
Felföldi, Mariann Kocsorné Sebő, Gábor Sey, and Péter Gábor Szabó. 

There were more than 120 participants and 101 talks in several fields of computer 
science and its applications. Beyond the Hungarian PhD schools in computer 
science, 6 other European countries were represented. The talks were going in 
two parallel sections in artificial intelligence, automata and formal languages, 
computer networks, database theory, discrete mathematics, fuzzy decision sup-
port systems, information systems, optimization, picture processing, and soft-
ware engineering. The talks of the students were completed by 4 plenary talks 
of leading scientists. 

Three scientific journals, viz. Periodica Polytechnica (Budapest), Publicationes 
Mathematicae (Debrecen) and Acta Cybernetica (Szeged) offered students to 
publish the paper version of their presentations after a selection and review 
process. Altogether 41 manuscripts were submitted for publication. The present 
special issue of Acta Cybernetica contains 14 such papers. 

The full program of the conference, the collection of the abstracts and further 
information can be found at http: //www. inf .u-szeged.hu/~cscs. 

On the basis of our repeated positive experiences, the conference will be orga-
nized in the future, too, hopefully with more foreign participants. According to 
the present plans, the next meeting will be held in July 2006 in Szeged. 

Tibor Csendes and Zoltán Fülöp 

183 





Acta Cybernetica 17 (2005) 185-198. 

Measurement and Optimization of Access Control 
Lists 

Sándor Palugyai* Máté J. Csorba* Sarolta Dibuz* and Gyula Csopaki* 

Abstract 

This paper deals with the examination of Access Control Lists (ACLs) 
that are used in IP routers mainly for providing network admission control 
and maintaining a certain level of quality of service. In our work we present 
a method for measuring the performance impact of ACLs on the packet for-
warding capabilities of a router. Besides, our study proposes new methods to 
model and optimize the operation and reduce the redundancy of ACLs. 

1 Introduction 

Nowadays the Internet usage is progressing at a great pace. More and more people 
become potential users and require faster connections. Recently, security has also 
become an important issue in business networks and at home as well. Because of 
these facts devices have to be designed and created, which allow us to build and 
maintain a more secure network. Their operation has to be optimized also. In this 
work a method is proposed for the optimization of Access Control Lists (ACLs) 
used in routers, which can maintain the operation of large networks. Besides, we 
present the model designed for the optimization process. 

In the next section we describe how ACLs work and can be used in IP networks. 
We also give a short example on their usage. In Section 3 we outline our method 
for the measurement of ACL performance that was implemented in TTCN-3, and 
we present our measurement results with a conventional access router. In Section 
4 we introduce a directed graph representation of ACLs and we give an algorithm 
based on the model for optimization of packet forwarding performance. In Section 
5 experimental measurement results are presented to demonstrate the applicability 
of our method. Finally, in Section 6 conclusion is given together with the possible 
future developments. 

'Ericsson Hungary Ltd., Test Competence Center, H-1117 Budapest, Irinyi J. u. 4-20. Email: 
{sandor.palugyai, mate.csorba, sarolta.dibuz}8ericsson.com 

tTechnical University of Budapest, Department of Telematics and Media Informatics Email: 
csopaki9tmit.bme.hu 
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2 The Application of Access Control Lists 
Nowadays, TCP/IP is the most widely used networking protocol, so it is an im-
portant security issue to control or restrict TCP/IP access. To achieve the needed 
control over IP traffic and to prohibit unauthorized access, ACLs are a commonly 
used solution in firewall routers, border routers and in any intermediate router that 
needs to filter traffic. 

ACLs are basically criteria put into a set of sequential conditions. Each line 
of such a list can permit or deny specific IP addresses or upper-layer protocols. 
Incoming or outgoing traffic flows can be classified and managed by a router using 
ACLs. There are two basic types of ACLs: standard and extended. 

With standard IP access lists, a router is capable of filtering the traffic based 
on source addresses only. Extended access lists, on the other hand, offer more 
sophisticated methods for access control by allowing filtering based not only on 
source addresses, but also on destination addresses and other protocol properties. 
Hence the command syntax of an extended ACL can be far more complex than a 
standard one. 

Standard ACL syntax: 

Router1(config)# access-list acl-number {deny I permit} [host] 

source-address [source-mask] [log] 

Extended ACL syntax: 

Routerl(config)# access-list acl-number {deny I permit} protocol 

[host] source-address [source-mask] [host] destination-address 

[destination-mask] [precedence precedence-id] [tos tos-id] 

[established] [log] [time-range tr-name] 

Figure 1: Standard and extended access list syntax 

In many cases ACLs are used for allocating resources needed by a user at a 
given time of a day, or to automatically reroute traffic according to the varying 
access rates provided by the ISPs. Service Level Agreements (SLAs), negotiated in 
advance, can be satisfied as well if time ranges are also specified in an access list. 
However time-based ACLs are not taken into consideration in this paper. 

ACLs can be applied on one or more interfaces of the router and in both di-
rections, but they work differently depending on which direction they are applied. 
When applied on outgoing interfaces, every received packet must be processed and 
switched by the router to the proper outgoing interface before checking against the 
appropriate list. And in case the rules defined in the list drop the packet, this 
results in a waste of processing power. 

When the administrator defines the access lists needed, they must be applied 
on the proper interface by issuing the ip access-group command. 

An application area for access lists is called session filtering. The main purpose 
of session filtering is to prevent (possibly malicious users on) outside hosts con-
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necting to hosts inside, while still allowing users inside the protected network to 
establish connections to the outside world. 

For the sake of clarity, consider the following example (Fig. 2). The administra-
tor who is managing a local network wants to allow users of the corporate network 
to access the local web-server, but at the same time access to the local worksta-
tions must be prohibited. Besides, the workstations should be able to establish 
connections destined to the corporate network. 

Figure 2: Example network 

The solution to the problem introduced above is realized by the ACL numbered 
111, which contains two separate lines. The first permits TCP traffic originated 
from any host, destined to the single host 10.120.23.1, which is an HTTP server. 
The destination TCP port is also restricted to 80, on which the HTTP server 
software is listening. The second line prohibits connections initiated by any host 
on the Corporate Network destined to the local network 10.120.23.0. Although it 
seems that this statement cuts the whole internal LAN from the outside world, 
the HTTP server is still available to connections because every incoming packet is 
checked against the statements sequentially. 

Example ACL (two lines): 

Router1(config)# a c c e s s - l i s t 111 permit tcp any host 10.120.23.1 
eq 80 
Routerl (conf ig)# a c c e s s - l i s t 111 deny any 10.120.23.0 
0 .0 .0 .255 

Figure 3: Setting up an ACL (an example) 

So, if the incoming packet belongs to a connection destined to the HTTP server, 
it matches the first line of the ACL and it is routed and transmitted to its desti-
nation. Any other packets that do not match the first line are checked against the 
second line and are discarded. In fact, every access list has a virtual line at the 
end that is called the implicit deny rule. The implicit deny discards every packet 
originated from any address destined to any other address. So, if the examined 
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packet does not match any of the rules, at the end it matches the implicit deny rule 
and it is discarded. As a matter of fact the second line is not necessary. Finally, 
when the proper access list is constructed, it needs to be bound to an interface of 
the router (Fig. 4). 

Applying the ACL on interface EthernetO/O: 

Routerl(config-if)# ip access-group 111 in 

Figure 4: Setting up an ACL (continued) 

Although conventional ACLs are relatively static, dynamic access lists exist to 
allow the rules to be changed for a short period of time, but require additional 
authentication processes. In this case exceptions are granted for the user (possibly 
with a higher privilege-level) to access additional network elements. The current 
work does not consider these types of ACLs [1]. 

When an ACL is applied on a router's interface, the router is forced to check 
every packet sent or received on that interface depending on the type of the ACL 
(in or out). This can seriously affect the packet forwarding performance. A very 
simple solution to cope with the performance impact of ACLs is to use the nullO 
interface, which is implemented software-only and acts as a garbage bin or a virtual 
interface for the unwanted traffic. 

The nullO interface can be used if and only if all of the traffic destined to a 
particular host or network destination needs to be restricted. In this CclS65 8L static 
route to the nullO interface can be added to the route table. This way the router 
forwards the unwanted traffic to the virtual garbage bin simply via a routing table 
entry without checking the packets against the ACL [2]. 

3 Measurement of ACL Performance 
Once an ACL is bound to one of the router's interfaces it may have a serious effect 
on packet forwarding. To determine the properties of this effect and to be able to 
compare performance of routers from different vendors we developed a method for 
measuring the ACL performance. 

The performance measurements were implemented in TTCN-3 (Testing and 
Test Control Notation version 3) language [3], which is originally used for confor-
mance testing purposes and is very similar to the conventional C language. Accord-
ingly, it is well equipped with constructs, supporting message-based communication 
with the particular implementation under test. 

Basically, a TTCN-3 test program has the following necessary modules. A 
module containing the definition of packet and message types used during testing; 
another module contains the so-called templates, which are basically constraints to 
the incoming and outgoing communication; a main module contains the functions 
and test cases used during testing, and reads the configuration files for parameters 
that are alternating between each test execution. 
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Definitions 

Templates 
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Test Cases 
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C Test 
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System Under 
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Figure 5: Simplified diagram of the most important modules of a T T C N - 3 
program 

A very important part of the test system is the test port, which establishes 
connection to the operating system allowing the test program to establish commu-
nication with the implementation under test. 

In traditional conformance testing methodology test ports are used simply as 
communication bridges without any further intelligence. Our measurement method 
utilizes modified IP test ports, which allow the use of precise timings and the 
transmission of IPv4 packets. But, beyond the original capabilities, the modified 
test port can cope with delay and round-trip-time measurements by using time 
stamps for any packet passing through. 

The measurement method uses different traffic patterns to estimate the delay 
as a function of ACL size. In all cases artificial flows are generated using TTCN-3. 
One option is to apply a rough estimation and simulate the distribution of packets, 
according to a macroscopic view of real Internet traffic. The packet distribution 
is composed based on the data collected by the NLANR project [4]. During this 
project 342 million packets were observed and analyzed. The average packet size 
was 402.7 bytes. 

The traffic according to this model consists of the following three main packet 
types: 

— 40 bytes: TCP packets without payload (20 bytes IP header + 20 bytes TCP 
header). These packets can be observed typically at initiation of a TCP 
connection. Approximately 35% of the packets can be classified into this 
type, but because these packets are very small this type gives only 3.5% of 
the traffic. 

— 576 bytes: TCP packets of obsolete implementations, which still use the MSS 
(Maximum Segment Size) value. 11.5% of the packets are this type though 
giving 16.5% of the traffic. 

— 1500 bytes: packet size according to the Ethernet MTU (Maximum Transfer 
Unit). Most of the data flowing through the Internet consists of full sized 
Ethernet frames, though giving 10% of the packets and 37% of the overall 
traffic. 

Considering packets with occurrence rate over 0.5%, the following packet sizes 
may occur (in order of frequency): 52, 1420, 444, 48, 60, 628, 552, 64, 56 and 1408 
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bytes. During the NLANR project 1.2% of the packets were smaller than 40 bytes. 
Although these packets are very small (only 0.1% of the traffic) the routers have 
to forward them also, and must be capable to handle the serious overhead caused 
by them. 

E 
>• 
a i o 

0 1000 2000 3000 4000 5000 6000 7000 8000 
ACL size 

Figure 6: Delay as a function of ACL size 

In the example (Fig. 6), 64 byte long UDP packets are generated every millisec-
ond. This speed is relatively slow compared to the raw throughput capability of the 
router under test (Cisco 2600 series access router, with an approximate transmission 
capability of 15000 packets per second [5]), to avoid undesirable latency or packet 
loss. The results confirm the conjecture that the delay is increasing significantly 
with the increasing number of access list entries. 

When examining ACL behavior, content carried in packet header fields carries 
relevant information. Accordingly measurement traffic is composed without respect 
to protocol payload, while the header fields are variable. Optimization is made 
based upon the match probabilities that the optimization algorithm reads as input 
for the process. By means of different match probabilities different traffic mixtures 
can be represented. 

We have also measured the delay with test rules mapped to the routing table 
using the nullO interface. In this case the average delay was only 0.32 ms with a 
variance of 0.1 us. However in this measurement, we had to constrain the rules 
to use destination address prefixes only, because of the limited capabilities of this 
filtering solution. 

25 

20 

15 

10 

last match in the list 

first match 

A y ' 

4 Optimization of ACL Performance 
The first objective during our research was to find a suitable representation format 
for the access lists for further examination. Hazelhurst [6] proposed the usage of 
binary decision diagrams, first introduced by Bryant [7] to represent access lists 
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Table 1: The example ACL in the original order with match numbers 

Node rule prefix/length # of matches 
C deny 10.120.238.130/32 4299 
O deny 10.120.238.7/32 357 
G deny 10.120.240.0/24 2500 
A deny 10.120.238.0/28 1214 
B permit 10.120.238.0/26 4910 
D permit 10.120.238.128/26 1703 
J deny 10.120.0.0/16 2028 
K permit 10.121.130.0/24 125 
L deny 10.121.0.0/16 1380 
I permit 10.120.239.132/32 417 
N deny 10.120.239.128/26 1612 
H deny 10.120.239.0/24 3301 
E deny 10.120.238.0/24 3 
M permit 10.120.238.64/26 0 
F permit 10.120.0.0/16 3405 

systematically. We decided to use directed graphs to describe the dependencies 
between the list entries. 

The example graph is constructed considering the following parameters: type of 
rule (permit/deny), network prefix, network mask length and the number of times 
the rule matched. Every node represents one line of the access list. In this quite 
simple example we assume that filtering is based on destination addresses only, and 
more importantly there is no rule querying any upper-layer protocol information 
such as TCP and UDP port numbers or protocol IDs. 

From this representation of the access list, the following graph can be con-
structed identifying which network prefix is more general and contains the other 
prefix as well (Fig. 7). The nodes are labeled by the capitals A..0 each one repre-
senting a single rule (one line of the list). 

At first, existing redundancy can be decreased in the list, by eliminating nodes, 
which depend from a node with a wider prefix having the same rule, and the wider 
rule is not represented by a star-like node. For example, a node can be deleted if its 
rule is preceding the other rule in the original list and its rule is completely a subset 
of the other rule at the same time. In this case, the weight of the actual rule (number 
of matches) is added to the weight of the more general rule. Secondly, suspicious 
nodes with 0 match can be checked and eliminated if needed. For example, node 
M permits traffic to 10.120.238.64/26 but network 10.120.238.0/24 is prohibited by 
node E, which comes before M in the original list, so M can be spared. 

We optimize an extended ACL, so each rule may contain port, protocol and 
address related constraints. The graph representing an extended ACL may contain 
cycles, as for example in the following basic rule-set. 
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Table 2: Cycle in the ACL 

No. rule Source address Destination address Protocol 
1 deny 10.120.0.0/24 any any 
2 deny any 10.200.20.0/24 any 
3 deny any any TCP 

In this example every list entry is a deny, but none of them can be deleted, 
because the rules are not a complete subset of each other. The constructed graph 
will contain the entries the following way (Fig. 8). 

Since the rules are examined in a sequential order, obviously the order in which 
they are specified has a semantic meaning [8]. Accordingly, during the optimization 
process the edges in the composed graph are directed based on these dependencies. 
In the example (Fig. 7), we consider the delay that a packet suffers equal for every 
list entry check operation, because the rules are simple and very similar to each 
other. But, generally the delay caused by a rule in a list is varying. However, the 
overall delay of the traffic can be estimated only if we also consider the arrival inten-
sity of the traffic and the queuing at the in/out interfaces [9]. Hence, we estimate 
the delay of the traffic in this example with a ratio, which is equivalent to the case 
when the traffic is slow enough that no queuing is present at the router's interfaces. 
In turn, we are able to compare the improvement we can gain by reordering the 
list entries. 

Figure 7: The graph representing the example and the optimization pro-
cess 
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Figure 8: Cycles in the constructed graph 

We define the following parameters: 

L 
T 

n(L) 
n(L) 

mi{L,T) 

the set of actual list entries; 
the traffic that is matched against list L; 
the number of list entries in L; 
the delay of rule number i. in list L\ 
the probability that a packet in T matches rule number i. in L. 

Considering these parameters the total delay a packet suffers that matches rule 
number i. in list L can be estimated as: 

i 

di{L) = Yjrk(L) (1) 

k—\ 

Furthermore, the total delay traffic T suffers while filtered through list L if there 
is no queuing present at the network interfaces: 

n(L) n(L) i 

Delay(L, T) = £ m^L, T) • di(L) = £ rm(L, T) • £ rk(L) (2) 
¿=1 t=l k= 1 

According to (2) the example input ACL (in Table 1 and Fig. 7) has a delay 
value of 192381, while the resulting ACL (in Fig. 7) has a value of 144840. These 
values do not have a unit, since they represent a ratio only for comparison. Ac-
cording to them the delay has been reduced by approximately 25%. The following 
algorithms use these formulas for comparing runtime results. 

At first, we have developed a brute force algorithm to optimize the graph rep-
resenting the ACL. This algorithm is executed after the graph has been built up in 
the memory and existing redundancy is removed. The algorithm evaluates every 
possible layout of the graph depending on the meanings of the rules and preserving 
the order of nodes that are dependent on each other. Afterwards, the theoretic 
delay of every layout is calculated using the weights of the nodes. At the end, 
the layout with the lowest calculated delay is chosen as the best solution. The 
reordered graph is then transformed back to a sequential list and can be uploaded 
to the router. 

However, the applicability of this algorithm is highly limited because of the time 
it takes to evaluate every possible set-up. For example, to check 14 nodes lasts 5 
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sec and for 15 nodes it is already 74 sec, 16 nodes last 1310 sec and for 20 nodes it 
would take approximately 1763 days. 

The graph optimizing processes were implemented in C + + , because of the com-
putationally intense calculations. Besides, the on-line communication with the 
router is implemented in Perl language and uses a telnet connection. This way the 
software can connect to routers from various vendors including Cisco, besides there 
is no need to implement the optimization inside the router, but it can be performed 
remotely from the connected network. 

In order to overcome the limitations of the brute force algorithm we have to 
consider a more efficient way of rebuilding the Access Control List. But first, we 
need to fabricate a criterion for a basic building block of our optimization process, 
namely to estimate the resource demand of merging two simple sub-graphs of the 
ACL. 

So, let us consider two separate sub-graphs of an ACL, namely list K and L. 
Let us also assume that the number of list entries is k and I respectively. In this 
case the two lists can be merged sjd ways: 

Ski = gT+i • 11 ' e'+1 * (3) 

Whereas matrices gi+i, et+i and Ai+± are the following: 

gi+i = 

: + i 

ei+1 = Ai+i = 

1 1 
0 1 

0 0 0 1 

More importantly, separate entries of K and L preserve their order in the re-
sulting list. Using Equation 3 we constructed the following algorithm: 

Algorithm 1 (The pseudo-code of the optimization algorithm). 

1. Establish an authenticated connection towards the router; 

2. Query the Access List data; 
{ 

2.1. FOREACH list entry 
{ 

2.1.1. Store the actual rule and number of matches into the 

memory 

> 

3. IF the newly created list is not the same as the one we have stored 

previously 
{ 

3.1. Construct a (possibly non-continuous)graph structure according 

to the ACL rules; 
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3.2. Assign weights to every node based on the number of matches on 

the particular list entry and on the delay of the actual rule; 

3.3. Eliminate possible redundant entries in the list 
{ 

3.3.1. IF an entry exists in the list that has never been 

matched, or incidentally the list contains an error, the entry 

is removed from the list 

> 
> 

4. FOREACH node starting from the leaves towards the root of the graph 
{ 

4.1. IF the sub-graph starting from the actual node can be reordered 

in reasonable time, according to (3), THEN the actual sub-graph is 

arranged into one branch with the brute-force algorithm. (The 

amount of reasonable time is estimated based on measurements and 

it is heavily hardware dependent, consequently short enough to 

allow us to neglect the time needed for reordering the nodes.) 

> 
5. FOREACH node starting from the leaves towards the root of the graph 

{ 

5.1. <weight of the actual node>:= <the original number of matches it 

has received> + <the weight of the underlying branches divided by 

the distance from the actual node> 
> 

6. FOREACH node of the graph 
{ 

6.1. <h> := the leaf with the most significant weight; 

6.2. Move <li> to the end of the list; 

6.3. Remove the selected leaf from the list (if <U> was the last node 

of a branch, zero or more new leaves appear) 

} 
7. Replace the current Access Control List in the router with the newly 

created one (this operation needs packet forwarding to be suspended 

for a very short period of time for security reasons). 

After the execution of this algorithm we compared the results with the results 
produced by the previous, brute force method. But, since the brute force algorithm 
can only be executed for a small amount of list entries the comparison is valid only 
for a few entries. However, we also conducted measurements with the method men-
tioned in Section 3, and found that with periodic optimization (using the algorithm 
detailed above) we can decrease the delay resulting from the use of very long ACLs, 
whilst still keeping the time needed for the execution of our optimization process 
below a reasonable level. 

As ACLs are usually defined once by a network administrator with respect to 
the given policies in the organization, and might be upgraded several times by hand, 
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the process lacks any kind of feedback or optimization based on the actual traffic in 
the network. In contrast, our method monitors list entry hit rates according to the 
traffic and can modify the list and upload a new one if it shows to be faster. The 
measurements show that our algorithm can be executed in an insignificant time 
(not more than 1 second) below 3000 access list entries, which is typically enough 
for routers used by Internet Service Providers. Moreover the time needed for the 
optimization can be kept below 70 seconds even for 10000 list entries. 

5 Application Results 

Initially, we developed four different algorithms called A1-A4. Afterwards, we made 
a thorough comparison regarding their performance and efficiency and decided to 
use algorithm A4. 

All four of the algorithms perform the following steps. A node is chosen at 
each step and transferred into the final re-ordered list. Algorithm Al chooses 
nodes according to leaf weights. A2 evaluates paths towards a certain leaf while 
summarizing node weights at the same time. Similarly A3 evaluates paths, but this 
algorithm decreases node weights along the path according to the place a node has 
in the path, e.g. the weight of the fourth node in the path is divided by four and 
the weights are summarized. A4 four is very similar to A3, but this time a node 
weight is divided by two at the power of node place. 

We generated list representations with rules in random initial order for testing 
the algorithms. Efficiency was calculated by comparing the resulting list of each 
algorithm to the initial list (4). 

Re suit originai = overall weight of the random generated list 
Resultaig0rithm = overall weight after optimization 

Efficiency = 100 • iResult°ri3inai - Resultalgorithrn\ (4) 

\ Result original J 

The scripts that generated random lists could generate random and balanced 
graphs also. Test runs were performed on the generated graphs with the four algo-
rithms automated also by scripts. The averaged results are shown in the following 
two diagrams. Fig. 9 represents the efficiency of the algorithms as a function of 
the number of list entries that is the number of nodes in the graph. 

The algorithms were also compared to the Brute Force method, in which case 
every possible layout of the graph is evaluated and the layout with the least weight 
is chosen. 

According to the results, algorithm A4 performs the best, in most cases the 
same order is chosen as by the Brute Force method. A few deviations do exist, e.g. 
one pair of rules is different. However, this comparison was made only with short 
lists, since the Brute Force method has an unacceptable execution time (Fig. 10). 

Fig. 10 shows the execution times as a function of list size. Algorithm A4 was 
chosen, because it is the most effective and it is fast too. Since even in core routers 
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Figure 9: Efficiency of the new algorithms 

Access List Size 

Figure 10: Execution time of the new algorithms 

more than 10000 entries are quite rare, but few thousands are possible it is notable 
that algorithm A4 has an execution time of nearly zero till a few thousand entries. 

6 Conclusions 
Firstly, we have developed a method to measure the performance impact of net-
work management with ACLs. Our measurement method uses regular PCs and it 
is a software-only solution. Compared to industrial solutions for the same problem, 
like the Router Tester from Agilent [10], it has similar capabilities combined with 
relatively cheapness and flexibility of a software solution. Using our test method it 
is possible to produce several streams to specified destinations, to test the function-
alities of access lists. Detailed PDU (Protocol Data Unit) building is available as 
well. As during an ACL test, raw transmission performance of the tester is not the 
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most important issue, since the performance impact of ACLs is measured instead 
of raw throughput capabilities. Our software solution satisfies the requirements of 
ACL testing. From the measurements, it can be concluded that the number and 
nature of access list entries have a significant impact on packet transmission in 
routers, so optimization might be needed. 

In the second part of this work we proposed a method to optimize performance 
of access lists. The method uses directed and weighted graphs to represent ACL 
rules. We developed an algorithm to optimize the layout of the graph representing 
the ACL and this way to minimize the latency caused by access lists. Our software 
is implemented in C + + and Perl. 

Our current work focuses on developing new, more efficient and faster algorithms 
to optimize ACLs, moreover we would like to examine the performance of ACLs 
using IPv6. Besides, we also would like to develop our method to be able to handle 
more general scenarios and to build a framework that is capable of examining more 
general list topologies applied for example in firewall systems or other software 
architectures as well. 
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Cycle Structure in Automata and the Holonomy 
Decomposition 

Attila Egri-Nagy* and Chrystopher L. Nehaniv* 

Abstract 
The algebraic hierarchical decomposition of finite state automata can be 

applied wherever a finite system should be 'understood' using a hierarchical 
coordinate system. Here we use the holonomy decomposition for character-
izing finite automata using derived hierarchical structure. This leads to a 
characterization according to the existence of different cycles within an au-
tomaton. The investigation shows that the problem of determining holonomy 
groups can be reduced to the examination of the cycle structure of certain 
derived automata. The results presented here lead to the improvements of the 
decomposition algorithms bringing closer the possibility of the application of 
the cascaded decomposition for real-world problems. 

1 Introduction 
The aim of this paper is to study the cycle structure in automata associated to the 
holonomy decomposition in Krohn-Rhodes Theory. With a recent computational 
tool [5] (developed by the authors) the Krohn-Rhodes theory [9] finally has com-
putational means to foster further research in it and to show its real significance to 
scientists working outside theoretical computer science. The main aim of this paper 
is to summarize the theoretical insights gained from the systematic study of finite 
state automata by examining their derived hierarchical decomposition computed 
by the implemented holonomy decomposition [6, 4], and show how these insights 
may be used for improving the algorithms. It also can be considered as a first 
- although still theoretical - computational application of the Krohn-Rhodes the-
ory remaining within the confines of algebraic automata theory. Further possible 
applications come up in all different fields where we deal with hierarchical mod-
els of systems: physics [13], software-development [10], artificial intelligencef-,[ll], 
evolutionary biology [12], etc. 

As the holonomy decomposition mainly deals with certain sets of subsets of an 
automaton's state set that are permuted by input words, our investigation concen-
trates on the question of when nontrivially permuted sets of appropriate subsets 
really exist and of recognizing when automata are completely without them. 

'School of Computer Science, University of Hertfordshire, College Lane, Hatfield, Herts ALIO 
9AB, United Kingdom, Email: {A.Nagy I C.L.Nehaniv}Qherts.ac.uk 
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2 Mathematical Preliminaries and Notations 
Here we establish the close connection between finite state automata and some 
algebraic structures called semigroups as it is more convenient to handle automata 
algebraically. The connection between these structures is outlined here with special 
emphasis on the cascaded product of automata, together with the notions of division 
and wreath product. For more details see [4, 1,6]. 

2.1 Transformation Semigroups 
Semigroups. A semigroup is a set 5 equipped with an associative binary operation 
/ i : 5x5—>5 . Instead of ¿¿(si,s2) we write si • S2 or more briefly S1S2. If A and 
B are subsets of a semigroup, then AB means the set {ab : a £ A,b € B}. An 
element 1 is the identity element of 5 if si = Is = s, for all s £ 5. The identity is 
unique if it exists. By 5 1 we denote 5 if it has an identity otherwise 5 U {1}. By 
5 1 we mean 5U { / } where I acts as an identity on 5 and itself, the identity of 5 (if 
it exists) ceases to be an identity as it fails on I. The order of a semigroup 5 is its 
cardinality |5|. We say that G generates the semigroup (G) = 5 if G C 5 and all 
elements of 5 can be expressed as a finite product of elements in G. A semigroup 
5 is aperiodic if for each element s £ 5 there is a positive natural number n such 
that sn = s n + 1 ; for a finite semigroup this means that it contains no nontrivial 
subgroups. 

Homomorphisms. Let 5 and T be semigroups with operations o,o respectively, 
and having a mapping ip : S —> T such that ip(si o S2) = ip(s 1) oip(s<2), for all 
Si,S2 £ S. Then we say that tp is a homomorphism from 5 to T, a mapping which 
preserves products. If a homomorphism is bijective then it is an isomorphism. 

Groups. A semigroup is a monoid if it has an identity element. A monoid is a 
group if for every s £ 5 there is an inverse s - 1 £ S such that ss _ 1 = s - 1 s = 1. A 
subset T of a semigroup 5 is a subsemigroup if it is closed under the multiplication 
of 5. Subgroups are defined analogously. A subgroup H of a group G is normal 
if gH = Hg Vg £ G. A nontrivial group is simple if it has no nontrivial normal 
subgroups. 

Transformations. For a nonvoid finite set A, a mapping : A —> A is called 
a transformation of A. If the mapping is bijective, then it is a permutation. The 
image of <p is defined as {aip : a € A} denoted by im(<p). If the image of a mapping 
is a singleton then the mapping is constant. The rank of a transformation is the 
cardinality of its image. The set T of all transformations of A form a semigroup 
under the operation of function composition of transformations and it is called the 
full transformation semigroup denoted by T4 = (A, T). If 5 is a subsemigroup of T 
then (A , 5) is called a transformation semigroup on A (or briefly a is), and we say 
that 5 acts on A. (A, 5) is a permutation group if each elements s £ 5 acts on A 
by permutation. We write a • s for the image of state a under the transformation 
s, and we have (a • si)s2 = a • (S1S2) for all a 6 A, si,s2 € 5. It is a basic fact 
of semigroup theory that every finite semigroup can be represented as a ts using 
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the right regular representation (S^S) where S acts on 5 1 by multiplication on 
the right [3]. If (A, 5) is a transformation semigroup, we denote by {A, S) the 
transformation semigroup with transformations S = {t \ t £ S or t is constant}. 

Division. We say that a transformation semigroup (A, S) divides (B,T) denoted 
by (A, S) | (B, T) if we can choose for all a £ A at least one a £ B as a lift and 
and for each s £ S at least one s £ T as a lift, such that the following hold: 

1. Each member of B (resp. T) is a lift of at most one element of A (resp. 5), 
i.e. the (non-empty) lift sets are non-intersecting, 

2. If a is any lift of a and s is any lift of s, then a • s is some lift of a • s, i.e. the 
products are respected. 

Denote the set of lifts of a state a by L(a) (and L(s) for a transformation s respec-
tively). Note that in general L(a) • L(s) C L(a • s), instead of being equal. 

Ç \L(a • s)J action in (B, T) 

a • s action in (j4, S) 

Words and the free semigroup. [15] Let X the set of letters be called the 
alphabet. A word over the alphabet X is a finite sequence of elements of X: 
(xi,x2, • • • ,xn), Xi £ X. The empty word is denoted by A. X+ is the set of all 
non-empty finite words. X+ is a semigroup under the operation of concatenation, 
it is called the free semigroup. X* = X+ U {A} is the free monoid. 

A word v £ X* is a factor of a word z £ X* if there exist words u, w £ X* such 
that z = uvw. v \s a, left factor of 2 if there exists a word w £ X* such that z = vw. 
A word w is primitive if it is not a power of another word. For any nonempty word 
w, the smallest factor u such that w — un, n > 1 is the primitive root of w. We 
also use the notation u = y/w. 

2.2 Finite State Automata 
By a finite state automaton, we mean a triple A = (A, X, S) where A is the (finite 
nonempty) state set, X is the input alphabet and <5 : A x X —» A is the transition 
function. We do not explicitly consider the output of the automaton as it can be 
recovered from the state and the input symbol. We tacitly use the state as the 
output. 

We can naturally extend the transition function for words i.e. sequences of in-
put symbols: for the empty word 6(a, A) = a, and for arbitrary words u,v £ X*, 
5(a,uv) = 5(S(a,u),v). There is a natural equivalence relation, the congruence in-
duced by A on words u = v if 5(a,u) = S(a,v) Va £ A, i.e. identifying words with 
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h GSi H— (AuSi) 61GA1 

ai € -4i 

f 2 - A l ^ S 2 
j (A2,52) b2£A2 

a2 € /12 

f3-.A2xA1^S3 

Figure 1: State transition in the wreath product (A3 ,S3 ) I (A2,S2) ? (Ai ,5 i ) . 
The transformation (/3, /2, /1) is applied to state (a3,a2,ai) yielding (b3,b2,b\) = 
(a3 • / 3 (a 2 , ai), ^2 • /2(^1)1 ai • /1)- The black bars denote the applications of func-
tions / 2 , / 3 according to hierarchical dependence. Note that the applications of 
these functions happen exactly at the same moment since their arguments are the 
previous states of other components, therefore there is no need to wait for the 
other components to calculate the new states. We use the state as the output of 
the automaton. 

the same action on A. The characteristic semigroup S(A), also called the semi-
group of the automaton, is the set equivalence classes X+/ = of this congruence, 
with associative operation induced by concatenation. With the characteristic semi-
group we can handle an automaton A as a transformation semigroup (A, S(A)). 
Conversely if S is a semigroup then the corresponding automaton is As = (5 1 , 5 ) , 
where the transition function is the right action of S on S1. 

An automaton A emulates another one B with states B if every computation 
which can be done in B can be done in A as well, i.e. (B , S(B)) divides (A, 5(A)) . 

Using automata terminology constant mappings in transformation semigroups 
are often called resets. A permutation-reset automaton is an automaton such that 
each of its inputs acts either as a permutation or a constant map on states. 

The state transition graph D(A) of an automaton A = (A,X, S) is a digraph 
with A as the set of vertices and (a, x, b) is a labelled edge if a • x = b, where 
a, b £ A, x £ X. It is a loop-edge if a = b. A path is a sequence of edges (a*, Xi, bi) 
1 < i < n with ai+i = bi for all 1 < i < n, and the label of the path is x\... xn. A 
loop is a path with bn = a\. 

2.3 Wreath Product Explained 
Although the concept of the wreath product is not so complicated, it is not as 
easy to present the intuitive idea how the loop-free cascaded product works. After 
reading the formal definition a figure may shed light on how state transitions happen 
in the product (Fig. 1). It is also a great help first to consider a simpler product 
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with no dependence between the components. 
Let (An, Sn),..., (Ai, Si) be transformation semigroups called components. 

The indices l , . . . , n are called coordinates. The direct product (An,Sn) x . . . x 
( j4 i , Si) is the ts (A n x ... x A\, Sn x ... x Si) with the componentwise action 

(an,..., ai) • (sn,..., si) = (an • s„,..., ai • si). 

Direct product is also called parallel composition as the components' state tran-
sitions do not depend on each other, and the order of the components does not 
really matter up to isomorphism. 

Now we introduce an order-dependent connection between the components. Let 
A = An x ... x Ai and Ta the full ts on A. Let S be the subsemigroup of Ta 
consisting of all transformations s : A —> A satisfying the condition of hierarchical 
dependence of coordinates. Denote pk : A —> Ak the /cth projection map, then for 
each k = 1 , . . . , n there exists fk : Ak-\ x • • • x A\ —> Sk such that 

Pk((tn, • • - ,tk+l,tk, • • • ,ti) • s) = tk • fk(tk-1, • • • ,fi) = t'k 

where s € S, tk, t'k £ Ak, k = 1 , . . . , n. 

That is, the new fcth coordinate t'k resulting from the action of s depends only 
on the values of the old first k coordinates and on the transformation s. More-
over, it is given by acting with an element of Sk which depends only on s and 
(tk-i, • • • ,t\). We can write this transformation as the ordered list of these func-
tions: s = ( / „ , . . . , / i ) . 

Then the transformation semigroup (A, S) = (An,Sn)l.. .l(Ai,S\) is the wreath 
product of transformation semigroups (A n , S n ) , . . . , (A\, Si). Reading from left to 
right the last component is the top level of the hierarchy. 

3 Holonomy Decomposition Theorem 
The holonomy decomposition originates from Zeiger's method of proving the Krohn-
Rhodes Theorem [16, 17, 7]. This algorithm work by the detailed study of how the 
semigroup S of an automaton (A, X, 5) acts on subsets of A. It looks for groups 
induced by S permuting some set of subsets of A. These groups are called the 
holonomy groups. These groups are the building blocks for the components of the 
decomposition. As we go deeper in the hierarchy of the cascade composition we 
have components that act on subsets with smaller cardinality. 

The sketch of the algorithm to obtain a decomposition: First calculate the set of 
images of transformations in S. From now on, let 1 denote this set extended by A 
itself and its singletons. On T there is a preorder relation called subduction defined. 
A subset P is subduction related to a subset Q if P is contained in a resulting set 
of acting by some s £ S on Q, i.e. P C Q • s. The mutual relation of elements 
induces an associated equivalence relation P = Q <==> P < Q and Q < P. The 
set of equivalence classes are partially ordered by the subduction relation. The set 
of equivalence classes and their partial order are called the subduction picture. The 
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tiles Bp of a subset P (P 6 J, |P| > 1) are its proper subsets directly below it 
in the subduction preorder. The union of its tiles equals to P. The length of a 
longest strict path from a singleton to a subset P in the partial order of subduction 
equivalence classes defines the height of the subsets within the equivalence class of 
P. Equivalence classes with the same height are on the same hierarchical level. The 
sets of tiles for each element Q G I form the tiling picture. The holonomy group 
HQ of Q is the group (arising from elements of SL) permuting the tile set BQ of Q. 
The component Hi of one hierarchical level i is the direct product of the holonomy 
groups belonging to the representative elements of equivalence classes with height 
i augmented with the constant mappings. 

Theorem 1 (Holonomy Decomposition [6, 4]). Let (A, S) be a finite transformation 
semigroup then (A, S) divides a wreath product of its holonomy permutation-reset 
transformation semigroups (Bi,Ti\) I - • l (Bh^h)-

This strong formulation of part of the Krohn-Rhodes theorem is slightly different 
from the original since the components here are groups extended with constants 
and not simple groups and the divisors of the flip-flop. But these permutation-
reset components can be easily decomposed into flip-flops and groups. Moreover 
the groups can be further decomposed into a series of simple groups using the 
Lagrange Coordinate Decomposition Theorem and Jordan-Holder Theorem [8, 4]. 
Note that the top level of the hierarchy is the component with highest index, not 
1. 

4 Cycles in Automata 

Definition 2. A graphical cycle in an automaton (A,X, S) is a cycle in its 
state transition digraph together with a word w G X+, i.e. a sequence of states 
ai,...,an n > 2, where the states in the sequence are pairwise distinct except 
ai = an, and w = x\... xn-i, Xi G X such that ai • Xi = a^+i for all 1 < i < n — 1. 
The word w = x\... xn-i is called the label of the cycle. 

Since n > 2 a loop edge is not a graphical cycle, and also, since ai ^ di+i within 
a graphical cycle, loop edges are not allowed. 

Definition 3. An algebraic cycle in an automaton A = {A, X, ¿) is a permutation 
group ( {ai , . • •, a n } , (w)) for which ai = aj => i = j, n > 1, and w is a word in X+ 

such that ai • w = aj+i for all 1 < i < n, and an • w = a\. 

The word w generates a cyclic group which acts faithfully on { a i , . . . , a n } by 
permutations. (Of course (w) might not act by permutations on A.) Obviously 
wn is the identity element. Moreover, n being greater than 1 excludes trivial one-
element groups. Note that loops are not generally algebraic cycles. The generator 
of the algebraic cycle is w, and its label is wn. 
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5 Graphically Cycle-Free Automata 
Definition 4. An automaton is graphically cycle-free if it does not have any graph-
ical cycle. 

The very simple structure of graphically cycle-free automata is reflected in their 
subduction pictures in the following way: 

Lemma 5. (A, S) is graphically cycle-free iff on every height level in each subduc-
tion relation equivalence class there is only one element. 

Proof: Let P, Q G I and P = Q but P ± Q. Since P, Q are finite |P| = |Q|. Clearly 
by finiteness there is at least one x G Q such that x ^ P fi Q, otherwise P, Q would 
be the same. Due to the equivalence of P and Q we have s,( 6 5 bijective mappings 
such that P = Q • s and Q = P • t and thus (st)n is the identity on Q for some 
n > 0, by the finiteness of P, Q. Since x • s = x' ^ x while x • (st)n = x, there must 
be a graphical cycle. 

Conversely, a graphical cycle ensures the existence of an equivalence class with 
at least two elements at height zero. • 

Another way to think about the proof of this lemma is to recognize that for the 
singleton subsets of the state set (at height zero) the equivalence classes are exactly 
the strongly connected components of the automaton's state transition graph. 

This result can be exploited in the decomposition algorithm since if the equiv-
alence classes are detected to all be singleton classes, then there is no need to 
look for holonomy groups at all and the holonomy identity-reset ts's can be built 
immediately. 

6 Algebraically Cycle-Free Automata 
It is a well-known result of algebraic automata theory that the star-free rational 
languages are recognized by exactly those automata whose characteristic monoid 
is aperiodic (having no nontrivial subgroup) [14]. It is also known that deciding 
aperiodicity for a finite automaton is PSPACE-complete[2], We are interested in 
this problem for certain derived automata that arise naturally in the holonomy 
decomposition. 

Intuitively one might expect that the state transition graph of an aperiodic 
automaton contains no cycles at all, but this is not true in general: there might be 
graphical cycles in it, while remaining aperiodic (see Fig 2). But with another type 
of cycles the notion of aperiodicity can be expressed. 

Definition 6. An automaton A = (A, X, <$) is algebraically cycle-free if it does not 
have any algebraic cycle. 

The property of algebraic cycle-freeness is tied up with the primitivity of words, 
which act on some states as the identity. 
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Lemma 7. An automaton A = (A,X, <5) is algebraically cycle-free iff for all states 
a £ A and for all words w £ X+ such that a-w = a , one of the following statements 
holds. 

1. w is primitive. 

2. w is not primitive but has primitive root и £ X+, i.e. w = un, and a • и = a. 

Proof: If w is primitive, then we are done. Otherwise w = un where и is primitive. 
Let's suppose indirectly that а и ф a. Let к be the least integer that a • uk = a 
(1 < к < n). Then ({a,a • u,...,a • иfc-1},(u)) is a cyclic permutation group 
(with at least two elements), therefore we have an algebraic cycle, contradicting 
our assumptions. 

The converse is obvious due to the fact that a trivial permutation group does not 
constitute an algebraic cycle, and the conditions 1—2 allow only trivial permutation 
groups. • 

Remark 8. Obviously Lemma 7 holds even if a - z Ф a for some left factor z of w. 

It is clear that in the absence of graphical cycles there cannot be any algebraic 
cycle. Thus, 

Proposition 9. If an automaton is graphically cycle-free then it is algebraically 
cycle-free. 

Now we show that aperiodic automata are exactly the algebraically (not the 
graphically) cycle-free ones. 

Theorem 10. The following are equivalent for an automaton A = (A, X, 6) with 
corresponding transformation semigroup (A, S) : 

1. A is algebraically cycle-free. 

2. S is aperiodic. 

3. Holonomy groups are trivial for (A,S). 

Proof: (1) => (2): Suppose S is not aperiodic, then we have a cyclic group (v) in 
S of order n > 2, where v £ X+ is a word representing the generator. Thus vn 

is the identity of the cyclic group, v = v n + 1 and v ф v2. Therefore 3a such that 
a • v Ф a - v2 and a • v = a • vn+1. Let a' = a • v, thus a' • vn = a' and since A is 
algebraically cycle-free we can apply Lemma 7: let и = \/v™ = \Jv. then we have 
a' • и = a', a' • v = a' and finally a • v2 = a • v, which is a contradiction. 

(2) => (1): For the converse we use again an indirect proof: Suppose there is an 
algebraic cycle, i.e. ( {a i , . . . ,a n } , (w)) is a permutation group with ai £ A,w £ X + 

and n > 1. Therefore Z n , the cyclic group with n elements, divides S. This cannot 
happen when S is aperiodic. 
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x x 

A x BV 

Figure 2: Automaton A has an algebraic cycle ({1,2}, (a)). Automaton B has 
graphical cycles ab, ba, but they are labelled with primitive words. 

Figure 3: An automaton A with state set A = {1,2,3,4,5,6} and alphabet {x, y}, 
where x and y are transformations with x = (3 4 1 3 4 3),?/ = (4 3 6 6 4 2). 

(2) (3): The components of the holonomy decomposition are all divisors 
of the original semigroup, thus aperiodic semigroups have only trivial holonomy 
groups, and wreath products and divisors of aperiodic transformation semigroups 
are aperiodic. • 

Corollary 11. An automaton A = (A,X,5) is aperiodic if and only if 

Vo € A, w € X+, x • w = a => a • y/w = a. 

The distinction between algebraically cycle-free aperiodic and nonaperiodic au-
tomata is rather subtle. Two automata having the same state-transition graphs 
regarding their connectivity might belong to different classes depending on how the 
input symbols act on the state set (Fig. 2). 

7 Non-Aperiodic Automata 
A main concern of the holonomy decomposition is to find the nontrivial holonomy 
groups. Fortunately the tiling picture provides tools for locating the elements of X 
for which there exist nontrivial holonomy groups. 

Lemma 12. For an element Q of I in the tiling picture of (A S) if there is a 
nontrivial holonomy group HQ, then in its set of tiles BQ there are at least two 
distinct tiles ii, ¿2 such that t\ = t^-
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Figure 4: The tiling picture of automaton A in Fig. 3. The equivalence classes are 
denoted by boxes. Equivalence classes with elements having nontrivial holonomy 
groups are shaded. Dotted edges denote the 'tile of' relation. 

Proof: HQ being nontrivial means that there are some pair(s) of tiles for which 
there are transformations permuting them and thus they are mutually subduction 
related. • 

The converse is not generally true as we can see in the example of an automaton 
(Fig 3) with tiling picture (Fig 4). For a trivial HQ the set of tiles BQ may 
contain distinct equivalent tiles, see Fig 5. In order to determine whether we have 
a nontrivial holonomy group for a Q £ 1 we define an extended automaton and 
examine its cycle structure. Denote the equivalence classes of subduction relation 
by Ei to En . 

Lemma 13. If P £ E, and for some s £ S, P • s = Q such that Q EI (leaving 
the equivalence class) then there is no transformation t £ S such that Q • t £ EI 
(no way back to the original equivalence class). 

Proof: Suppose there is such a t that Q = P • s and P' = Q t with P = P'. Due to 
the equivalence we have P = P'-s" for some s" £ S, therefore Q-{ts") = P'-s" = P, 
thus Q = P, which contradicts the original assumption that we leave the equivalence 
class of P. • 

Let's define EQ as the union of equivalence classes which contain at least one 
tile of Q £ 1. Formally: EQ = U^nSq^e Then the tile automaton of Q is 
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X 

CnÂgJ.' 

X 

Figure 5: Two tile automata of automaton A in Fig. 3. ^4.{i,3,4} is trivial, while 
-4(2,3,6} is nontrivial with generator word y. 

defined as AQ = (EQ U 7), where i is a sink state, the input alphabet X is 
the same as the original automaton's, and 7 is the natural extension of S to act on 
subsets of A providing that if the image is not in some Ei then it is c. This way 
? represents going to another equivalence class not contained in EQ. but according 
to Lemma 13 this can be represented as a sink since there is no way to come back. 

The equivalence classes in EQ form strongly connected components in AQ. 
When determining the nontriviality of HQ we look for algebraic cycles in these 
components. We look not simply for independent algebraic cycles in each compo-
nent as a word of a cycle might not permute the tile elements in another component, 
but for parallel algebraic cycles. This way we can recast the characterization of a 
holonomy group element in terms of algebraic cycles. More formally: 

Proposition 14. HQ is nontrivial iff there exists a word w 6 A+ and BQ can be 
partitioned into {Ti,..., Tk) subsets such that either 
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1. Ti consists of exactly one tile and Ti • w = Ti, or 

2. TI • (W) C BQ Pl EJ for some 1 < j < N, and (TI • (w), (w)) is an algebraic 
cycle in AQ 

holds for all Ti, 1 < i < k, and (2) must hold for at least one Ti. 

In short the proposition characterizes when the transformation induced by w 
nontrivially permutes BQ. This transformation is clearly a nontrivial holonomy 
group element. From Lemma 13, Ti • wn € (BQ fl Ej) follows for any n > 0. 
Therefore the algebraic cycles contained in BQ generated by W are all disjoint. If 
all intersections (BQDEJ) are singletons, or none of them contains an algebraic cycle 
then HQ is trivial. This fact can be exploited in efficient decomposition algorithms 
of the holonomy decomposition by excluding cases where the construction of the 
holonomy group should not be attempted. 

8 Conclusions 
Using an implementation of the holonomy decomposition we could get new insights 
about its working mechanism and found a relation between the cycle structure of 
an automaton and its holonomy components. We also showed that detecting cycles 
with primitive words helps in excluding elements of T when searching for holon-
omy groups. Currently we are investigating the possibility of efficient construction 
of holonomy groups by using the extended tile automata replacing the current 
algorithm which is based on a breadth-first search in the space of semigroup ele-
ments. These results will eventually lead to improvements of the decomposition 
algorithms providing efficient and scalable tools for attacking real-world problems 
such as analyzing metabolic networks [13], understanding biological complexity [12], 
AI applications [11] and so on. 
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A Hierarchical Evaluation Methodology in Speech 
Recognition 

Gábor Gosztolya* and András Kocsor* 

Abstract 
In speech recognition vast hypothesis spaces are generated, so the search 

methods used and their speedup techniques are both of great importance. One 
way of getting a speedup gain is to search in multiple steps. In this multi-
pass search technique the first steps use only a rough estimate, while the latter 
steps apply the results of the previous ones. To construct these raw tests we 
use simplified phoneme groups which are based on some distance function 
defined over phonemes. The tests we performed show that this technique 
could significantly speed up the recognition process. 

Keywords: speech recognition, search methods, multi-stack decoding, multi-
pass search, phoneme grouping. 

1 Introduction 
Automatic speech recognition (ASR) is a pattern classification problem [1] in which 
a continuously varying signal has to be mapped to á string of symbols (the phonetic 
transcription). Besides the identification of speech segments with grammatical 
phonemes [2], efficient searching in the induced hypothesis space [3] is of great 
importance as well. This work is related to both areas: first we give a hierarchical 
scheme of the Hungarian phonemes, then we try to exploit this structure in the 
search process. 

In this paper we want to construct a multi-pass search method where the differ-
ent steps are based on the selection of the different phoneme groups used. However 
this construction of the phoneme groups is not trivial, so the choice of the algorithm 
we use heavily affects the speed and recognition accuracy of the speech recognition 
system. 

The structure of this paper is as follows. First we define the speech recognition 
problem and the search task. Then we construct a phoneme grouping method based 
on a distance function between phonemes. Lastly, after presenting and analyzing 
the test results, we mention some suggestions for future study. 

* Research Group on Artificial Intelligence of the Hungarian Academy of Sciences 
and University of Szeged, H-6720 Szeged, Aradi vértanúk tere 1., Hungary, e-mail: 
{ggabor,kocsor}0inf.u-szeged.hu 
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2 Search Spaces in Speech Recognition 
In speech recognition problems we have a speech signal represented by a series of 
observations A = a\a2 • • - at, and a set of possible phoneme sequences (words or 
word sequences) which will be denoted by W. Our task is to find the word w £ W 
defined by 

ui = arg max P(w\A), (1) 
wEW 

which, using Bayes' theorem, is equivalent to the following maximization problem: 

P(A\w) • P(w) 
w = arg max v ' , . (2) 

ywe\v P(A) K ' 

Further, noting the fact that P(A) is the same for all w € W, we have that 

w = arg max P(A\w)P(w). (3) w£W 

Speech recognition models can be divided into two types (the discriminative and 
generative ones), depending on whether they use Eq. (1) or Eq. (3). Throughout 
this paper we will apply the customary, generative approach [4]. 

Unified view 

Both the generative and discriminative models exploit frame-based and/or segment-
based [5] features, and this fact allows us to have a unified framework of the frame-
and segment-based recognition techniques. To make this clearer, we will provide 
a brief outline of this framework along with the hypothesis structure that will be 
generated. 

Now let us commence with some definitions. Let us define w as 0i02. . .0 n , 
where Oj is the jth phoneme of word w. Furthermore, let A\, A2,..., An be 
non-overlapping segments of the observation series A = a\a2...at, where A} = 

1 . • • atj, j £ {1 , . . . ,n}. An Aj segment is defined by its start and end times 
and will be denoted by [tj-i,tj]. For a segmentation A = A\, A2,..., An we 
put the values of the time indices corresponding to each segment into a vector 
Tn = [ io , i i , . . . , i„] (1 = to < 11 < . . . < tn — t). We make the conventional as-
sumption that the phonemes in a word are independent so that P(A\w) can be ob-
tained from P(Ai|oi), P(A2\o2),..., P(An\on) in-some way. To calculate P(A|ui), 
various aggregation operators can be used at two distinct levels. In the first one 
the P(Aj\oj) probability values are supplied by a g\ operator, i.e. 

P(Aj\oj) = gidtj-i^j^Oj), 

which provides an overall value for measuring how well the Aj segment repre-
sents the Oj phoneme based on local information sources. In the second one, 
another operator (g2) is used to construct P ( A | k ; ) using the probability values 
P ( j 4 i | o i ) ) . : . , P ( A n | o n ) . 
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Frame-based approach 

The well-known Hidden Markov Model (HMM) [6] is basically a frame-based ap-
proach, i.e. it handles a speech signal frame by frame. Usually a Gaussian Mixture 
Model (GMM) is applied to compute the P(ai\oj) values (for delta and delta-delta 
features neighboring observations are also required) and for the Aj segment the 
gi([tj_x,tj],Oj) value is defined by 

ti 
coj-p(ai-k---ai+k\0j), (4) 

i=tj~ i 

where 0 < c0j < 1 . Practically speaking, g\ includes all the information we have 
when we are in a particular state of a HMM model. We note here that, instead of 
GMM, Artificial Neural Networks (ANNs) and other machine learning algorithms 
that can be used for density estimation are also viable. This alternative provides a 
way for creating model hybrids. As for the P(A\w) value, the g2 operator is defined 
by 

71 — 1 
P i A M l l i l - C o ^ P i A ^ ) . (5) 

j = 1 

Segment-based approach 

In the segment-based speech recognition approach - like the SUMMIT system of 
MIT [7] or our OASIS [8] - g\ will usually be the direct output of some machine 
learning algorithm using features that describe the whole [ i j - i , tj] segment. Among 
the many possibilities the most conventional choice of g2 is simply to multiply the 
probabilities, but in earlier works we showed that using other operators can be 
beneficial for both the speed and performance [9]. In the following we will stick 
to multiplication, but the improvements discussed here could also be implemented 
using other aggregation operators. 

The hypothesis space 

The task of speech recognition is essentially a selection problem over a Cartesian 
product space where the first dimension is a set of word hypotheses, while the 
second is a set of segmentations. Given a set of words W, we use Prefk(W) to 
denote the fc-long prefixes of all the words in W having at least k phonemes. Let 

Tfc = { [ i o . i i , . . . , i f c ] : l = i o < i i <---<tk<t} (6) 

be the set of sub-segmentations made of k segments over the observation series 
ai<i2 .. .at. The hypotheses will be object pairs, i.e. they are elements of 

oo 
ff= (J (Prefk(W)xTk). 

k=0 
(7) 
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We will denote the root of the tree - the initial hypothesis - by ho = 
(0, [to]) (h0 G H). Here Prefx(W) x T1 will contain the first-level nodes. 
For a (oiO2...Oj,[t0,...,tj]) leaf we link all (oio2 . . . OjOj+i, [t0, • • •, t j , t j + i ] ) e 
Prefj+l(W) x nodes. 

Now we need to evaluate the nodes of the search tree. To this end let the 
gi and 32 functions be defined by some aggregation operators. Then, for a node 
(0102 .. .Oj,[to,... , t j ] ) , the value is defined by 

92(9i([to,ti],oi),... ^ r d t j - i ^ j l o j ) ) . (8) 

Note that, in practice, it is worth calculating this expression recursively. After 
defining the evaluation methodology we will look for a leaf with the highest prob-
ability. 

This definition in typical circumstances leads to a huge hypothesis space, where 
a full search will be impractical because of the big run time and memory re-
quirements. This leads us to employ heuristics like the well-known Viterbi beam 
search [10] or our choice, the multi-stack decoding algorithm [11]. 

3 Clustering the Phoneme Set 

In this section we discuss the technique we used to create smaller, more compact 
phoneme groups. First we define two novel, similar functions between phonemes, 
prove that they have the right sort of properties to be distance functions, then 
utilize them in the phoneme-clustering problem. 

There is no simple answer to the problem of how we should construct the 
phoneme groups mentioned above. We might base it on previous grammatical 
knowledge or use the confusion matrix of the phoneme classifier. The justification 
for the latter option is that the recognition process is already heavily based on the 
phoneme classifier. 

A classifier gets some set of observations, and its task is to classify this set into 
one of the D. = {wi,w2 , . . . ,u>k} classes. A confusion matrix A is constructed in 
such a way that a^- is the number of phonemes belonging to u>j from a selected 
test set which we classified as WjS by the classifier [12]. In our case the classifier 
is used to categorize the parts of speech into one of the phoneme classes. The 
confusion matrix of a good classifier is close to a diagonal matrix, which is why we 
will concentrate on the number of misclassified items (i.e. the number of examples 
that were incorrectly classified). 

Grouping phonemes is a standard clustering problem [13]: some points (here, 
the phoneme classes) are to be assigned to a certain number of clusters (in our case, 
phoneme groups). There are some quite general algorithms for this task. The one 
we are going to use needs a distance function for two clusters, which will be defined 
below, but first we will explain how this algorithm works. 

At the start each phoneme will be considered as different clusters. Then, in each 
step, we find those Ci and Cj clusters where V(Ci,Cj) is minimal, and combine 
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Table 1: An example of a confusion matrix 
1 2 3 4 5 « 7 8 9 10 11 

1 2502 3 96 35 4 0 0 4 8 0 12 
2 18 965 3 24 3 0 0 0 5 1 49 
3 87 8 875 19 2 0 0 5 11 0 18 
4 43 11 16 271 1 1 0 1 2 0 12 
5 12 2 3 2 2250 257 80 101 53 5 48 
6 0 1 0 0 51 299 17 22 8 24 17 
7 1 0 0 0 46 31 208 6 1 15 5 
8 3 4 3 1 70 39 8 5235 111 19 116 
9 7 1 6 3 19 10 2 97 461 2 77 

10 1 0 0 0 12 88 25 62 11 830 8 
11 39 71 21 31 38 23 19 102 367 18 2316 

them. We repeat this until T>(Ci, Cj) > L, where L is a parameter. (See Appendix 
A for the pseudocode of this algorithm.) 

To define our novel distance functions first let A! be a normalized matrix for 
the confusion matrix A of the applied phoneme classifier. It takes the form 

k 

We can assume that Yhk ak,j 0, otherwise it would mean that the jth phoneme 
has no examples in the test database. Next we define a distance function based on 
this A' matrix. Let 

4 , = 
00 

-logia'ij) 
-log{a'jti) 
min(~log(a' id), -log^ t)) 

if i = j 
if a'ij = a'j i = 0 and i ± j 
if a'jti = 0 and a'itj j- 0 
if a( j = 0 and a'^ ± 0 
otherwise, 

(9) 

and let 

( 0 i i i = j 
djj = I oo if a'itj = a!u = 0 and i ± j (10) 

[ -log((a'itj + a'ji)/2) otherwise. 

Now let D' be the output of some shortest path-finding algorithm with the input 
of the D1 or D2 matrix. (We can choose either of them, but of course if we use 
both, this choice leads to twice as many test cases. The figures we obtained can 
be seen in the results section.) D' is a distance function, moreover it satisfies the 
criteria of being a metric because 
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Figure 1: Number of phoneme groups (classes) - L limit diagram for the four 
distance-variations; d1 and d2, respectively. The A and C curves belong to Vmin, 
while the B and D curves belong to the T>max group distance function. 

• = o 

• d'u < d i k + d'k j 

Now we have to define the distance T>(Ci,Cj) of the clusters Ct and Cj, when we 
have only the d'(xi,yi) values (the distance between different phonemes). To do 
this we have two straightforward options [13]: 

Vmin{Ci,Cj) = minX:y{d'(x,y)\x 6 City £ Cj}, (11) 

and 
Vmax(Ci,Cj) = maxX!y{d'{x,y)\x € City € Cj}. (12) 

The former tends to create longer, larger clusters, while the latter usually creates 
more compact ones. In our experiments we tested both versions. 

We should mention here that the use of T>max in this algorithm could lead to a 
nondeterministic case if, at any given point, there exist some clusters Ci, Cj and 
Cfc such that T>max(Ci,Cj) = T>max(Ci, Ck)- Note here that Vmin is not a metric 
because in some cases the triangle inequality does not hold: there exist Ci, Cj and 
Ck clusters such that Vmin(Ci,Cj) ^ Vmin(Ci,Ck) 4- Vmin(Ck,Cj). 

3.1 Tests 
Applying the clustering algorithm (using one of the above V functions) will lead 
to a series of unions and a series of distance values. Based on them we can choose 
the possible values of the limit L, which will result in phoneme groups that will be 
used in the recognition process. Obviously, good L values are those where there is 
a nice gap between successive distance values in the output. 

After examining Figure 1 we identified those bigger flat regions in each curve. 
For each of them we selected three Ls, resulting in the same number of phoneme 
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groups, which were later used in the multi-pass recognition method. The corre-
sponding recognition steps were called Pass 1 (pi), Pass 2 (p^) and Pass 3 (P3), 
with the number of phoneme groups varying from 27 to 34, from 17 to 21 and 
from 10 to 13, respectively. The default phoneme set was labelled po and had 52 
phonemes. 

4 The Search Process 
Given the phoneme groups - and hence the hypothesis space - we still have to 
search for the best hypothesis. There are standard search heuristics for this task, 
from which we chose the multi-stack decoding algorithm. Moreover, there is the 
possibility of constructing multi-pass methods where there are multiple steps in the 
search process. Here we decided to apply this idea using the already constructed 
phoneme groups. 

Multi-pass Search Strategies 

In general, multi-pass methods work in two or more steps: in the first pass 
the less likely hypotheses are discarded because of some condition requiring low 
computational time. Then, in the later passes, only the remaining hypotheses 
are examined by more complex, reliable evaluations, which will approximate the 
probabilities of the hypotheses more closely. (In the common search methods only 
the last pass remains, so more hypotheses are scanned there, making the process 
more time-consuming.) 

To speed up the earlier steps, we need to construct faster phoneme classifiers, 
and the usual way of doing this is to reduce the number of features. (In our system, 
where ANNs are used, it also leads to a lower number of hidden neurons.) Here 
the number of phoneme groups was decreased. In the first pass a search with a 
very restricted phoneme set was performed. Then, in the later passes, more and 
more detailed phoneme groupings were used, where the dictionary consisted of the 
'winning' words of the previous level. Obviously, during the last pass we had to use 
the original phoneme set to get only one word as a result, not a set of words. At 
each level we employed the multi-stack decoding algorithm in the search process. 

The Multi-stack Search Method 

The multi-stack decoding algorithm [11] is one of the heuristic search methods 
we mentioned earlier, and we chose this one as our basic search technique. To 
discuss the method first we have to give a definition. A stack is a structure for 
keeping hypotheses in. Moreover, we use limited-sized stacks: if there are too 
many hypotheses in a stack, we prune the ones with the highest cost. 

In this algorithm we assign a separate stack to each time instance ti and store the 
hypotheses in the stack according to their end times. In the first step we place ho 
(the initial hypothesis) into the stack associated with the first time instance, then, 
advancing in time, we pop each hypothesis in turn from the given stack, extend 


