
Volume 17 Number 2

ACTA
CYBERNETICA

Editor-in-Chief: J. Csirik (Hungary)

Managing Editor: Z. Fülöp (Hungary)

Assistant to the Managing Editor: B. Tóth (Hungary)

Editors: L. Aceto (Denmark), M. Arató (Hungary), S. L. Bloom (USA), H. L. Bodlaender
(The Netherlands), W. Brauer (Germany), L. Budach (Germany), H. Bunke (Switzerland),
B. Cource l le (France), J. D e m e t r o v i c s (Hungary) , B. D ö m ö l k i (Hungary) ,
J. Engelfriet (The Netherlands), Z. Ésik (Hungary), F. Gécseg (Hungary), J. Gruska
(Slovakia), B. Imreh (Hungary), H. Jürgensen (Canada), A. Kelemenová (Czech Republic),
L. Lovász (Hungary), G. F"aun (Romania), A. Prékopa (Hungary), A. Salomaa (Finland),
L. Varga (Hungary), H. Vogler (Germany), G. Wöginger (Austria)

Szeged, 2005

ACTA CYBERNETICA

Information for authors. Acta Cybernetica publishes only original papers in the field
of Computer Science. Manuscripts must be written in good English. Contributions are
accepted for review with the understanding that the same work has not been published
elsewhere. Papers previously published in conference proceedings, digests, preprints are
eligible for consideration provided that the author informs the Editor at the time of
submission and that the papers have undergone substantial revision. If authors have used
their own previously published material as a basis for a new submission, they are required
to cite the previous work(s) and very clearly indicate how the new submission offers
substantively novel or different contributions beyond those of the previously published
work(s). Each submission is peer-reviewed by at least two referees. The length of the
review process depends on many factors such as the availability of an Editor and the
time it takes to locate qualified reviewers. Usually, a review process takes 6 months to
be completed. There are no page charges. Fifty reprints are supplied for each article
published.

Manuscript Formatting Requirements. All submissions must include a title page
with the following elements:

• title of the paper
• author name(s) and affiliation
• name, address and email of the corresponding author
• An abstract clearly stating the nature and significance of the paper. Abstracts must

not include mathematical expressions or bibliographic references.
References should appear in a separate bibliography at the end of the paper, with

items in alphabetical order referred to by numerals in square brackets. Please prepare your
submission as one single PostScript or PDF file including all elements of the manuscript
(title page, main text, illustrations, bibliography, etc.). Manuscripts must be submitted by
email as a single attachment to either the most competent Editor, the Managing Editor,
or the Editor-in-Chief. In addition, your email has to contain the information appearing
on the title page as plain ASCII text. When your paper is accepted for publication, you
will be asked to send the complete electronic version of your manuscript to the Managing
Editor. For technical reasons we can only accept files in KT^X format.

Subscription Information. Acta Cybernetica is published by the Institute of Infor-
matics, University of Szeged, Hungary. Each volume consists of four issues, two issues
are published in a calendar year. Subscription rates for one issue are as follows: 5000 Ft
within Hungary, €40 outside Hungary. Special rates for distributors and bulk orders are
available upon request from the publisher. Printed issues are delivered by surface mail
in Europe,l and by air mail to overseas countries. Claims for missing issues are accepted
within six months from the publication date. Please address all requests to:

Acta Cybernetica, Institute of Informatics, University of Szeged
P.O. Box 652, H-6701 Szeged, Hungary
Tel: +36 62 546 396, Fax: +36 62 546 397, Email: actaSinf.u-szeged.hu

W e b access. The above informations along with the contents of past issues are available
at the Acta Cybernetica homepage http://www.inf .u-szeged.hu/actacybernetica/ .

http://www.inf

W . Brauer
Institut für Informatik
Technische Universität München
D-80290 München
Germany

A. Kelemenová
Institute of Mathematics and
Computer Science
Silesian University at Opava
761 01 Opava, Czech Republic

L. Budach
University of Postdam
Department of Computer Science
Am Neuen Palais 10
14415 Postdam, Germany

L. Lovász
Eötvös Loránd University
Department of Computer Science
Budapest, Kecskeméti u. 10-12.
H-1053 Hungary

H. Bunke
Universität Bern
Institut für Informatik und
angewandte Mathematik
Längass strasse 51.
CH-3012 Bern, Switzerland

G. Päun
Institute of Mathematics
Romanian Academy
P.O.Box 1-764, RO-70700
Bucuresti, Romania

B. Courcelle
Université Bordeaux-1
LaBRI, 351 Cours de la Libération
33405 TALENCE Cedex
Prance

J. Demetrovics
MTA SZTAKI
Budapest, Lágymányosi u. 11.
H - l l l l Hungary

B. Dömölki
IQSOFT
Budapest, Teleki Blanka u. 15-17.
H-1142 Hungary

Z. Esik
University of Szeged
Department of Foundations of
Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

A. Prékopa
Eötvös Loránd University
Department of Operations Research
Budapest, Kecskeméti u. 10-12.
H-1053 Hungary

A. Salomaa
University of Turku
Department of Mathematics
SF-20500 Turku 50, Finland

L. Varga
Eötvös Loránd University
Department of General Computer Science
Budapest, Pázmány Péter sétány 1/c.
H-1117 Hungary

H. Vogler
Dresden University of Technology
Department of Computer Science
Foundations of Programming
D-01062 Dresden, Germany

G. Woginger
Department of Matematics
University of Twente
P.O. Box 217, 7500 AE Enschede
The Netherlands

EDITORIAL BOARD

Editor-in-Chief: J. Csirik Managing Editor: Z. Fülöp
University of Szeged University of Szeged
Department of Computer Algorithms Department of Foundations of
and Artificial Intelligence Computer Science
Szeged, Árpád tér 2. Szeged, Árpád tér 2.
H-6720 Hungary H-6720 Hungary

Assistant to the Managing Editor:

B. Tóth
University of Szeged
Research Group on
Artificial Intelligence
Szeged, Árpád tér 2.
H-6720 Hungary

Editors:

L. Aceto
Distributed Systems and Semantics Unit
Department of Computer Science
Aalborg University
Fr. Bajersvej 7E
9220 Aalborg East, Denmark

M. Arato
University of Debrecen
Department of Mathematics
Debrecen, P.O. Box 12
H-4010 Hungary

S. L. Bloom
Stevens Intitute of Technology
Department of Pure and Applied
Mathematics
Castle Point, Hoboken
New Jersey 07030, USA

H. L. Bodlaender
Department of Computer Science
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands

F. Gécseg
University of Szeged
Department of Computer Algorithms
and Artificial Intelligence
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

J. Gruska
Institute of Informatics/Mathematics
Slovak Academy of Science
Dúbravska 9, Bratislava 84235
Slovakia

B. Imreh
University of Szeged
Department of Applied Informatics
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

H. Jiirgensen
The University of Western Ontario
Department of Computer Science
Middlesex College, London, Ontario
Canada N6A 5B7

Preface

The 4th Conference for PhD Students in Computer Science (CSCS) was or-
ganized by the Department of Computer Science of the University of Szeged
(SZTE) and held in Szeged, Hungary from July 1 to 4, 2004'. The members
of the Scientific Committee were the following representants of the Hungar-
ian doctoral schools in computer science: Mátyás Arató (DE), András Benczúr
(ELTE), Miklós Bartha (SZTE), Tibor Csendes (SZTE)', János Csirik (SZTE),
János Demetrovics (SZTAKI), Sarolta Dibuz (Ericsson), József Dombi (SZTE),
Zoltán Esik (SZTE), Ferenc Friedler (VE), Zoltán Fülöp (SZTE), Ferenc Gécseg
(chair, SZTE), Tibor Gyimóthy (SZTE), Balázs Imreh (SZTE), János Kormos
(DE), László Kozma (ELTE), Attila Kuba (SZTE), Eörs Máté (SZTE), Gyula
Pap (DE), András Recski (BMGE), Endre Selényi (BMGE), Katalin Tarnay
(NOKIA), György Túrán (SZTE), and László Varga (ELTE). The members of
the Organizing Committee were Balázs Bánhelyi, Tibor Csendes (chair), Tünde
Felföldi, Mariann Kocsorné Sebő, Gábor Sey, and Péter Gábor Szabó.

There were more than 120 participants and 101 talks in several fields of computer
science and its applications. Beyond the Hungarian PhD schools in computer
science, 6 other European countries were represented. The talks were going in
two parallel sections in artificial intelligence, automata and formal languages,
computer networks, database theory, discrete mathematics, fuzzy decision sup-
port systems, information systems, optimization, picture processing, and soft-
ware engineering. The talks of the students were completed by 4 plenary talks
of leading scientists.

Three scientific journals, viz. Periodica Polytechnica (Budapest), Publicationes
Mathematicae (Debrecen) and Acta Cybernetica (Szeged) offered students to
publish the paper version of their presentations after a selection and review
process. Altogether 41 manuscripts were submitted for publication. The present
special issue of Acta Cybernetica contains 14 such papers.

The full program of the conference, the collection of the abstracts and further
information can be found at http: //www. inf .u-szeged.hu/~cscs.

On the basis of our repeated positive experiences, the conference will be orga-
nized in the future, too, hopefully with more foreign participants. According to
the present plans, the next meeting will be held in July 2006 in Szeged.

Tibor Csendes and Zoltán Fülöp

183

Acta Cybernetica 17 (2005) 185-198.

Measurement and Optimization of Access Control
Lists

Sándor Palugyai* Máté J. Csorba* Sarolta Dibuz* and Gyula Csopaki*

Abstract

This paper deals with the examination of Access Control Lists (ACLs)
that are used in IP routers mainly for providing network admission control
and maintaining a certain level of quality of service. In our work we present
a method for measuring the performance impact of ACLs on the packet for-
warding capabilities of a router. Besides, our study proposes new methods to
model and optimize the operation and reduce the redundancy of ACLs.

1 Introduction

Nowadays the Internet usage is progressing at a great pace. More and more people
become potential users and require faster connections. Recently, security has also
become an important issue in business networks and at home as well. Because of
these facts devices have to be designed and created, which allow us to build and
maintain a more secure network. Their operation has to be optimized also. In this
work a method is proposed for the optimization of Access Control Lists (ACLs)
used in routers, which can maintain the operation of large networks. Besides, we
present the model designed for the optimization process.

In the next section we describe how ACLs work and can be used in IP networks.
We also give a short example on their usage. In Section 3 we outline our method
for the measurement of ACL performance that was implemented in TTCN-3, and
we present our measurement results with a conventional access router. In Section
4 we introduce a directed graph representation of ACLs and we give an algorithm
based on the model for optimization of packet forwarding performance. In Section
5 experimental measurement results are presented to demonstrate the applicability
of our method. Finally, in Section 6 conclusion is given together with the possible
future developments.

'Ericsson Hungary Ltd., Test Competence Center, H-1117 Budapest, Irinyi J. u. 4-20. Email:
{sandor.palugyai, mate.csorba, sarolta.dibuz}8ericsson.com

tTechnical University of Budapest, Department of Telematics and Media Informatics Email:
csopaki9tmit.bme.hu

185

186 Sándor Palugyai, Máté J. Csorba, Sarolta Dibuz, and Gyula Csopaki

2 The Application of Access Control Lists
Nowadays, TCP/IP is the most widely used networking protocol, so it is an im-
portant security issue to control or restrict TCP/IP access. To achieve the needed
control over IP traffic and to prohibit unauthorized access, ACLs are a commonly
used solution in firewall routers, border routers and in any intermediate router that
needs to filter traffic.

ACLs are basically criteria put into a set of sequential conditions. Each line
of such a list can permit or deny specific IP addresses or upper-layer protocols.
Incoming or outgoing traffic flows can be classified and managed by a router using
ACLs. There are two basic types of ACLs: standard and extended.

With standard IP access lists, a router is capable of filtering the traffic based
on source addresses only. Extended access lists, on the other hand, offer more
sophisticated methods for access control by allowing filtering based not only on
source addresses, but also on destination addresses and other protocol properties.
Hence the command syntax of an extended ACL can be far more complex than a
standard one.

Standard ACL syntax:

Router1(config)# access-list acl-number {deny I permit} [host]

source-address [source-mask] [log]

Extended ACL syntax:

Routerl(config)# access-list acl-number {deny I permit} protocol

[host] source-address [source-mask] [host] destination-address

[destination-mask] [precedence precedence-id] [tos tos-id]

[established] [log] [time-range tr-name]

Figure 1: Standard and extended access list syntax

In many cases ACLs are used for allocating resources needed by a user at a
given time of a day, or to automatically reroute traffic according to the varying
access rates provided by the ISPs. Service Level Agreements (SLAs), negotiated in
advance, can be satisfied as well if time ranges are also specified in an access list.
However time-based ACLs are not taken into consideration in this paper.

ACLs can be applied on one or more interfaces of the router and in both di-
rections, but they work differently depending on which direction they are applied.
When applied on outgoing interfaces, every received packet must be processed and
switched by the router to the proper outgoing interface before checking against the
appropriate list. And in case the rules defined in the list drop the packet, this
results in a waste of processing power.

When the administrator defines the access lists needed, they must be applied
on the proper interface by issuing the ip access-group command.

An application area for access lists is called session filtering. The main purpose
of session filtering is to prevent (possibly malicious users on) outside hosts con-

Measurement and Optimization of Access Control Lists 187

necting to hosts inside, while still allowing users inside the protected network to
establish connections to the outside world.

For the sake of clarity, consider the following example (Fig. 2). The administra-
tor who is managing a local network wants to allow users of the corporate network
to access the local web-server, but at the same time access to the local worksta-
tions must be prohibited. Besides, the workstations should be able to establish
connections destined to the corporate network.

Figure 2: Example network

The solution to the problem introduced above is realized by the ACL numbered
111, which contains two separate lines. The first permits TCP traffic originated
from any host, destined to the single host 10.120.23.1, which is an HTTP server.
The destination TCP port is also restricted to 80, on which the HTTP server
software is listening. The second line prohibits connections initiated by any host
on the Corporate Network destined to the local network 10.120.23.0. Although it
seems that this statement cuts the whole internal LAN from the outside world,
the HTTP server is still available to connections because every incoming packet is
checked against the statements sequentially.

Example ACL (two lines):

Router1(config)# a c c e s s - l i s t 111 permit tcp any host 10.120.23.1
eq 80
Routerl (conf ig)# a c c e s s - l i s t 111 deny any 10.120.23.0
0 .0 .0 .255

Figure 3: Setting up an ACL (an example)

So, if the incoming packet belongs to a connection destined to the HTTP server,
it matches the first line of the ACL and it is routed and transmitted to its desti-
nation. Any other packets that do not match the first line are checked against the
second line and are discarded. In fact, every access list has a virtual line at the
end that is called the implicit deny rule. The implicit deny discards every packet
originated from any address destined to any other address. So, if the examined

188 Sándor Palugyai, Máté J. Csorba, Sarolta Dibuz, and Gyula Csopaki

packet does not match any of the rules, at the end it matches the implicit deny rule
and it is discarded. As a matter of fact the second line is not necessary. Finally,
when the proper access list is constructed, it needs to be bound to an interface of
the router (Fig. 4).

Applying the ACL on interface EthernetO/O:

Routerl(config-if)# ip access-group 111 in

Figure 4: Setting up an ACL (continued)

Although conventional ACLs are relatively static, dynamic access lists exist to
allow the rules to be changed for a short period of time, but require additional
authentication processes. In this case exceptions are granted for the user (possibly
with a higher privilege-level) to access additional network elements. The current
work does not consider these types of ACLs [1].

When an ACL is applied on a router's interface, the router is forced to check
every packet sent or received on that interface depending on the type of the ACL
(in or out). This can seriously affect the packet forwarding performance. A very
simple solution to cope with the performance impact of ACLs is to use the nullO
interface, which is implemented software-only and acts as a garbage bin or a virtual
interface for the unwanted traffic.

The nullO interface can be used if and only if all of the traffic destined to a
particular host or network destination needs to be restricted. In this CclS65 8L static
route to the nullO interface can be added to the route table. This way the router
forwards the unwanted traffic to the virtual garbage bin simply via a routing table
entry without checking the packets against the ACL [2].

3 Measurement of ACL Performance
Once an ACL is bound to one of the router's interfaces it may have a serious effect
on packet forwarding. To determine the properties of this effect and to be able to
compare performance of routers from different vendors we developed a method for
measuring the ACL performance.

The performance measurements were implemented in TTCN-3 (Testing and
Test Control Notation version 3) language [3], which is originally used for confor-
mance testing purposes and is very similar to the conventional C language. Accord-
ingly, it is well equipped with constructs, supporting message-based communication
with the particular implementation under test.

Basically, a TTCN-3 test program has the following necessary modules. A
module containing the definition of packet and message types used during testing;
another module contains the so-called templates, which are basically constraints to
the incoming and outgoing communication; a main module contains the functions
and test cases used during testing, and reads the configuration files for parameters
that are alternating between each test execution.

Measurement and Optimization of Access Control Lists 189

Definitions

Templates

Functions

Test Cases

I M Conf i g

C Test
Ports y

System Under
rest

Figure 5: Simplified diagram of the most important modules of a T T C N - 3
program

A very important part of the test system is the test port, which establishes
connection to the operating system allowing the test program to establish commu-
nication with the implementation under test.

In traditional conformance testing methodology test ports are used simply as
communication bridges without any further intelligence. Our measurement method
utilizes modified IP test ports, which allow the use of precise timings and the
transmission of IPv4 packets. But, beyond the original capabilities, the modified
test port can cope with delay and round-trip-time measurements by using time
stamps for any packet passing through.

The measurement method uses different traffic patterns to estimate the delay
as a function of ACL size. In all cases artificial flows are generated using TTCN-3.
One option is to apply a rough estimation and simulate the distribution of packets,
according to a macroscopic view of real Internet traffic. The packet distribution
is composed based on the data collected by the NLANR project [4]. During this
project 342 million packets were observed and analyzed. The average packet size
was 402.7 bytes.

The traffic according to this model consists of the following three main packet
types:

— 40 bytes: TCP packets without payload (20 bytes IP header + 20 bytes TCP
header). These packets can be observed typically at initiation of a TCP
connection. Approximately 35% of the packets can be classified into this
type, but because these packets are very small this type gives only 3.5% of
the traffic.

— 576 bytes: TCP packets of obsolete implementations, which still use the MSS
(Maximum Segment Size) value. 11.5% of the packets are this type though
giving 16.5% of the traffic.

— 1500 bytes: packet size according to the Ethernet MTU (Maximum Transfer
Unit). Most of the data flowing through the Internet consists of full sized
Ethernet frames, though giving 10% of the packets and 37% of the overall
traffic.

Considering packets with occurrence rate over 0.5%, the following packet sizes
may occur (in order of frequency): 52, 1420, 444, 48, 60, 628, 552, 64, 56 and 1408

190 Sándor Palugyai, Máté J. Csorba, Sarolta Dibuz, and Gyula Csopaki

bytes. During the NLANR project 1.2% of the packets were smaller than 40 bytes.
Although these packets are very small (only 0.1% of the traffic) the routers have
to forward them also, and must be capable to handle the serious overhead caused
by them.

E
>•
a i o

0 1000 2000 3000 4000 5000 6000 7000 8000
ACL size

Figure 6: Delay as a function of ACL size

In the example (Fig. 6), 64 byte long UDP packets are generated every millisec-
ond. This speed is relatively slow compared to the raw throughput capability of the
router under test (Cisco 2600 series access router, with an approximate transmission
capability of 15000 packets per second [5]), to avoid undesirable latency or packet
loss. The results confirm the conjecture that the delay is increasing significantly
with the increasing number of access list entries.

When examining ACL behavior, content carried in packet header fields carries
relevant information. Accordingly measurement traffic is composed without respect
to protocol payload, while the header fields are variable. Optimization is made
based upon the match probabilities that the optimization algorithm reads as input
for the process. By means of different match probabilities different traffic mixtures
can be represented.

We have also measured the delay with test rules mapped to the routing table
using the nullO interface. In this case the average delay was only 0.32 ms with a
variance of 0.1 us. However in this measurement, we had to constrain the rules
to use destination address prefixes only, because of the limited capabilities of this
filtering solution.

25

20

15

10

last match in the list

first match

A y '

4 Optimization of ACL Performance
The first objective during our research was to find a suitable representation format
for the access lists for further examination. Hazelhurst [6] proposed the usage of
binary decision diagrams, first introduced by Bryant [7] to represent access lists

Measurement and Optimization of Access Control Lists 191

Table 1: The example ACL in the original order with match numbers

Node rule prefix/length # of matches
C deny 10.120.238.130/32 4299
O deny 10.120.238.7/32 357
G deny 10.120.240.0/24 2500
A deny 10.120.238.0/28 1214
B permit 10.120.238.0/26 4910
D permit 10.120.238.128/26 1703
J deny 10.120.0.0/16 2028
K permit 10.121.130.0/24 125
L deny 10.121.0.0/16 1380
I permit 10.120.239.132/32 417
N deny 10.120.239.128/26 1612
H deny 10.120.239.0/24 3301
E deny 10.120.238.0/24 3
M permit 10.120.238.64/26 0
F permit 10.120.0.0/16 3405

systematically. We decided to use directed graphs to describe the dependencies
between the list entries.

The example graph is constructed considering the following parameters: type of
rule (permit/deny), network prefix, network mask length and the number of times
the rule matched. Every node represents one line of the access list. In this quite
simple example we assume that filtering is based on destination addresses only, and
more importantly there is no rule querying any upper-layer protocol information
such as TCP and UDP port numbers or protocol IDs.

From this representation of the access list, the following graph can be con-
structed identifying which network prefix is more general and contains the other
prefix as well (Fig. 7). The nodes are labeled by the capitals A..0 each one repre-
senting a single rule (one line of the list).

At first, existing redundancy can be decreased in the list, by eliminating nodes,
which depend from a node with a wider prefix having the same rule, and the wider
rule is not represented by a star-like node. For example, a node can be deleted if its
rule is preceding the other rule in the original list and its rule is completely a subset
of the other rule at the same time. In this case, the weight of the actual rule (number
of matches) is added to the weight of the more general rule. Secondly, suspicious
nodes with 0 match can be checked and eliminated if needed. For example, node
M permits traffic to 10.120.238.64/26 but network 10.120.238.0/24 is prohibited by
node E, which comes before M in the original list, so M can be spared.

We optimize an extended ACL, so each rule may contain port, protocol and
address related constraints. The graph representing an extended ACL may contain
cycles, as for example in the following basic rule-set.

192 Sándor Palugyai, Máté J. Csorba, Sarolta Dibuz, and Gyula Csopaki

Table 2: Cycle in the ACL

No. rule Source address Destination address Protocol
1 deny 10.120.0.0/24 any any
2 deny any 10.200.20.0/24 any
3 deny any any TCP

In this example every list entry is a deny, but none of them can be deleted,
because the rules are not a complete subset of each other. The constructed graph
will contain the entries the following way (Fig. 8).

Since the rules are examined in a sequential order, obviously the order in which
they are specified has a semantic meaning [8]. Accordingly, during the optimization
process the edges in the composed graph are directed based on these dependencies.
In the example (Fig. 7), we consider the delay that a packet suffers equal for every
list entry check operation, because the rules are simple and very similar to each
other. But, generally the delay caused by a rule in a list is varying. However, the
overall delay of the traffic can be estimated only if we also consider the arrival inten-
sity of the traffic and the queuing at the in/out interfaces [9]. Hence, we estimate
the delay of the traffic in this example with a ratio, which is equivalent to the case
when the traffic is slow enough that no queuing is present at the router's interfaces.
In turn, we are able to compare the improvement we can gain by reordering the
list entries.

Figure 7: The graph representing the example and the optimization pro-
cess

Measurement and Optimization of Access Control Lists 193

Figure 8: Cycles in the constructed graph

We define the following parameters:

L
T

n(L)
n(L)

mi{L,T)

the set of actual list entries;
the traffic that is matched against list L;
the number of list entries in L;
the delay of rule number i. in list L\
the probability that a packet in T matches rule number i. in L.

Considering these parameters the total delay a packet suffers that matches rule
number i. in list L can be estimated as:

i

di{L) = Yjrk(L) (1)

k—\

Furthermore, the total delay traffic T suffers while filtered through list L if there
is no queuing present at the network interfaces:

n(L) n(L) i

Delay(L, T) = £ m^L, T) • di(L) = £ rm(L, T) • £ rk(L) (2)
¿=1 t=l k= 1

According to (2) the example input ACL (in Table 1 and Fig. 7) has a delay
value of 192381, while the resulting ACL (in Fig. 7) has a value of 144840. These
values do not have a unit, since they represent a ratio only for comparison. Ac-
cording to them the delay has been reduced by approximately 25%. The following
algorithms use these formulas for comparing runtime results.

At first, we have developed a brute force algorithm to optimize the graph rep-
resenting the ACL. This algorithm is executed after the graph has been built up in
the memory and existing redundancy is removed. The algorithm evaluates every
possible layout of the graph depending on the meanings of the rules and preserving
the order of nodes that are dependent on each other. Afterwards, the theoretic
delay of every layout is calculated using the weights of the nodes. At the end,
the layout with the lowest calculated delay is chosen as the best solution. The
reordered graph is then transformed back to a sequential list and can be uploaded
to the router.

However, the applicability of this algorithm is highly limited because of the time
it takes to evaluate every possible set-up. For example, to check 14 nodes lasts 5

194 Sándor Palugyai, Máté J. Csorba, Sarolta Dibuz, and Gyula Csopaki

sec and for 15 nodes it is already 74 sec, 16 nodes last 1310 sec and for 20 nodes it
would take approximately 1763 days.

The graph optimizing processes were implemented in C + + , because of the com-
putationally intense calculations. Besides, the on-line communication with the
router is implemented in Perl language and uses a telnet connection. This way the
software can connect to routers from various vendors including Cisco, besides there
is no need to implement the optimization inside the router, but it can be performed
remotely from the connected network.

In order to overcome the limitations of the brute force algorithm we have to
consider a more efficient way of rebuilding the Access Control List. But first, we
need to fabricate a criterion for a basic building block of our optimization process,
namely to estimate the resource demand of merging two simple sub-graphs of the
ACL.

So, let us consider two separate sub-graphs of an ACL, namely list K and L.
Let us also assume that the number of list entries is k and I respectively. In this
case the two lists can be merged sjd ways:

Ski = gT+i • 11 ' e'+1 * (3)

Whereas matrices gi+i, et+i and Ai+± are the following:

gi+i =

: + i

ei+1 = Ai+i =

1 1
0 1

0 0 0 1

More importantly, separate entries of K and L preserve their order in the re-
sulting list. Using Equation 3 we constructed the following algorithm:

Algorithm 1 (The pseudo-code of the optimization algorithm).

1. Establish an authenticated connection towards the router;

2. Query the Access List data;
{

2.1. FOREACH list entry
{

2.1.1. Store the actual rule and number of matches into the

memory

>

3. IF the newly created list is not the same as the one we have stored

previously
{

3.1. Construct a (possibly non-continuous)graph structure according

to the ACL rules;

Measurement and Optimization of Access Control Lists 195

3.2. Assign weights to every node based on the number of matches on

the particular list entry and on the delay of the actual rule;

3.3. Eliminate possible redundant entries in the list
{

3.3.1. IF an entry exists in the list that has never been

matched, or incidentally the list contains an error, the entry

is removed from the list

>
>

4. FOREACH node starting from the leaves towards the root of the graph
{

4.1. IF the sub-graph starting from the actual node can be reordered

in reasonable time, according to (3), THEN the actual sub-graph is

arranged into one branch with the brute-force algorithm. (The

amount of reasonable time is estimated based on measurements and

it is heavily hardware dependent, consequently short enough to

allow us to neglect the time needed for reordering the nodes.)

>
5. FOREACH node starting from the leaves towards the root of the graph

{

5.1. <weight of the actual node>:= <the original number of matches it

has received> + <the weight of the underlying branches divided by

the distance from the actual node>
>

6. FOREACH node of the graph
{

6.1. <h> := the leaf with the most significant weight;

6.2. Move to the end of the list;

6.3. Remove the selected leaf from the list (if <U> was the last node

of a branch, zero or more new leaves appear)

}
7. Replace the current Access Control List in the router with the newly

created one (this operation needs packet forwarding to be suspended

for a very short period of time for security reasons).

After the execution of this algorithm we compared the results with the results
produced by the previous, brute force method. But, since the brute force algorithm
can only be executed for a small amount of list entries the comparison is valid only
for a few entries. However, we also conducted measurements with the method men-
tioned in Section 3, and found that with periodic optimization (using the algorithm
detailed above) we can decrease the delay resulting from the use of very long ACLs,
whilst still keeping the time needed for the execution of our optimization process
below a reasonable level.

As ACLs are usually defined once by a network administrator with respect to
the given policies in the organization, and might be upgraded several times by hand,

196 Sándor Palugyai, Máté J. Csorba, Sarolta Dibuz, and Gyula Csopaki

the process lacks any kind of feedback or optimization based on the actual traffic in
the network. In contrast, our method monitors list entry hit rates according to the
traffic and can modify the list and upload a new one if it shows to be faster. The
measurements show that our algorithm can be executed in an insignificant time
(not more than 1 second) below 3000 access list entries, which is typically enough
for routers used by Internet Service Providers. Moreover the time needed for the
optimization can be kept below 70 seconds even for 10000 list entries.

5 Application Results

Initially, we developed four different algorithms called A1-A4. Afterwards, we made
a thorough comparison regarding their performance and efficiency and decided to
use algorithm A4.

All four of the algorithms perform the following steps. A node is chosen at
each step and transferred into the final re-ordered list. Algorithm Al chooses
nodes according to leaf weights. A2 evaluates paths towards a certain leaf while
summarizing node weights at the same time. Similarly A3 evaluates paths, but this
algorithm decreases node weights along the path according to the place a node has
in the path, e.g. the weight of the fourth node in the path is divided by four and
the weights are summarized. A4 four is very similar to A3, but this time a node
weight is divided by two at the power of node place.

We generated list representations with rules in random initial order for testing
the algorithms. Efficiency was calculated by comparing the resulting list of each
algorithm to the initial list (4).

Re suit originai = overall weight of the random generated list
Resultaig0rithm = overall weight after optimization

Efficiency = 100 • iResult°ri3inai - Resultalgorithrn\ (4)

\ Result original J

The scripts that generated random lists could generate random and balanced
graphs also. Test runs were performed on the generated graphs with the four algo-
rithms automated also by scripts. The averaged results are shown in the following
two diagrams. Fig. 9 represents the efficiency of the algorithms as a function of
the number of list entries that is the number of nodes in the graph.

The algorithms were also compared to the Brute Force method, in which case
every possible layout of the graph is evaluated and the layout with the least weight
is chosen.

According to the results, algorithm A4 performs the best, in most cases the
same order is chosen as by the Brute Force method. A few deviations do exist, e.g.
one pair of rules is different. However, this comparison was made only with short
lists, since the Brute Force method has an unacceptable execution time (Fig. 10).

Fig. 10 shows the execution times as a function of list size. Algorithm A4 was
chosen, because it is the most effective and it is fast too. Since even in core routers

Measurement and Optimization of Access Control Lists 197

0 2000 4000 6000 8000 10000
Access List Size

Figure 9: Efficiency of the new algorithms

Access List Size

Figure 10: Execution time of the new algorithms

more than 10000 entries are quite rare, but few thousands are possible it is notable
that algorithm A4 has an execution time of nearly zero till a few thousand entries.

6 Conclusions
Firstly, we have developed a method to measure the performance impact of net-
work management with ACLs. Our measurement method uses regular PCs and it
is a software-only solution. Compared to industrial solutions for the same problem,
like the Router Tester from Agilent [10], it has similar capabilities combined with
relatively cheapness and flexibility of a software solution. Using our test method it
is possible to produce several streams to specified destinations, to test the function-
alities of access lists. Detailed PDU (Protocol Data Unit) building is available as
well. As during an ACL test, raw transmission performance of the tester is not the

198 Sándor Palugyai, Máté J. Csorba, Sarolta Dibuz, and Gyula Csopaki

most important issue, since the performance impact of ACLs is measured instead
of raw throughput capabilities. Our software solution satisfies the requirements of
ACL testing. From the measurements, it can be concluded that the number and
nature of access list entries have a significant impact on packet transmission in
routers, so optimization might be needed.

In the second part of this work we proposed a method to optimize performance
of access lists. The method uses directed and weighted graphs to represent ACL
rules. We developed an algorithm to optimize the layout of the graph representing
the ACL and this way to minimize the latency caused by access lists. Our software
is implemented in C + + and Perl.

Our current work focuses on developing new, more efficient and faster algorithms
to optimize ACLs, moreover we would like to examine the performance of ACLs
using IPv6. Besides, we also would like to develop our method to be able to handle
more general scenarios and to build a framework that is capable of examining more
general list topologies applied for example in firewall systems or other software
architectures as well.

References
[1] Scott Hazelhurst: A proposal for Dynamic Access Lists for TCP/IP Packet Filtering

[Sortened Version In Proc. of SAICSIT 2001]

[2] S. Convery: Network Security Architectures [lrst edition, ISBN: 158705115X. Cisco
Press (2004)]

[3] ETSI: Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3: Core Language [ETSI ES 201 873-1]

[4] NLANR: National Library for Applied Network Research, http://www.nlanr.net/

[5] Cisco: http://www.cisco.com/
[6] Scott Hazelhurst: Algorithms for Analysing Firewall and Router Access Lists [Work-

shop on Dependable IP Systems & Platforms, In Proc. ICDSN, June 2000]
[7] R Bryant: Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams

[ACM Computing Surveys, 24(3) (September 1992)]

|8] Jeff Sedayao: Cisco IOS Access Lists [lrst edition, ISBN: 1-56592-385-5. O'Reillyj

[9] S. Palugyai, M. J. Csorba. Modeling Access Control Lists with Discrete-Time Quasi
Birth-Death Processes. Submitted to the The 20th International Symposium on Com-
puter and Information Sciences (ISCIS 2005)

[10] Agilent RouterTester: http://advanced.comms.agilent.com/RouterTester/

http://www.nlanr.net/
http://www.cisco.com/
http://advanced.comms.agilent.com/RouterTester/

Acta Cybernetica 17 (2005) 199-211.

Cycle Structure in Automata and the Holonomy
Decomposition

Attila Egri-Nagy* and Chrystopher L. Nehaniv*

Abstract
The algebraic hierarchical decomposition of finite state automata can be

applied wherever a finite system should be 'understood' using a hierarchical
coordinate system. Here we use the holonomy decomposition for character-
izing finite automata using derived hierarchical structure. This leads to a
characterization according to the existence of different cycles within an au-
tomaton. The investigation shows that the problem of determining holonomy
groups can be reduced to the examination of the cycle structure of certain
derived automata. The results presented here lead to the improvements of the
decomposition algorithms bringing closer the possibility of the application of
the cascaded decomposition for real-world problems.

1 Introduction
The aim of this paper is to study the cycle structure in automata associated to the
holonomy decomposition in Krohn-Rhodes Theory. With a recent computational
tool [5] (developed by the authors) the Krohn-Rhodes theory [9] finally has com-
putational means to foster further research in it and to show its real significance to
scientists working outside theoretical computer science. The main aim of this paper
is to summarize the theoretical insights gained from the systematic study of finite
state automata by examining their derived hierarchical decomposition computed
by the implemented holonomy decomposition [6, 4], and show how these insights
may be used for improving the algorithms. It also can be considered as a first
- although still theoretical - computational application of the Krohn-Rhodes the-
ory remaining within the confines of algebraic automata theory. Further possible
applications come up in all different fields where we deal with hierarchical mod-
els of systems: physics [13], software-development [10], artificial intelligencef-,[ll],
evolutionary biology [12], etc.

As the holonomy decomposition mainly deals with certain sets of subsets of an
automaton's state set that are permuted by input words, our investigation concen-
trates on the question of when nontrivially permuted sets of appropriate subsets
really exist and of recognizing when automata are completely without them.

'School of Computer Science, University of Hertfordshire, College Lane, Hatfield, Herts ALIO
9AB, United Kingdom, Email: {A.Nagy I C.L.Nehaniv}Qherts.ac.uk

199

200 Attila Egri-Nagy and Chrystopher L. Nehaniv

2 Mathematical Preliminaries and Notations
Here we establish the close connection between finite state automata and some
algebraic structures called semigroups as it is more convenient to handle automata
algebraically. The connection between these structures is outlined here with special
emphasis on the cascaded product of automata, together with the notions of division
and wreath product. For more details see [4, 1,6].

2.1 Transformation Semigroups
Semigroups. A semigroup is a set 5 equipped with an associative binary operation
/ i : 5x5—>5 . Instead of ¿¿(si,s2) we write si • S2 or more briefly S1S2. If A and
B are subsets of a semigroup, then AB means the set {ab : a £ A,b € B}. An
element 1 is the identity element of 5 if si = Is = s, for all s £ 5. The identity is
unique if it exists. By 5 1 we denote 5 if it has an identity otherwise 5 U {1}. By
5 1 we mean 5U { / } where I acts as an identity on 5 and itself, the identity of 5 (if
it exists) ceases to be an identity as it fails on I. The order of a semigroup 5 is its
cardinality |5|. We say that G generates the semigroup (G) = 5 if G C 5 and all
elements of 5 can be expressed as a finite product of elements in G. A semigroup
5 is aperiodic if for each element s £ 5 there is a positive natural number n such
that sn = s n + 1 ; for a finite semigroup this means that it contains no nontrivial
subgroups.

Homomorphisms. Let 5 and T be semigroups with operations o,o respectively,
and having a mapping ip : S —> T such that ip(si o S2) = ip(s 1) oip(s<2), for all
Si,S2 £ S. Then we say that tp is a homomorphism from 5 to T, a mapping which
preserves products. If a homomorphism is bijective then it is an isomorphism.

Groups. A semigroup is a monoid if it has an identity element. A monoid is a
group if for every s £ 5 there is an inverse s - 1 £ S such that ss _ 1 = s - 1 s = 1. A
subset T of a semigroup 5 is a subsemigroup if it is closed under the multiplication
of 5. Subgroups are defined analogously. A subgroup H of a group G is normal
if gH = Hg Vg £ G. A nontrivial group is simple if it has no nontrivial normal
subgroups.

Transformations. For a nonvoid finite set A, a mapping : A —> A is called
a transformation of A. If the mapping is bijective, then it is a permutation. The
image of <p is defined as {aip : a € A} denoted by im(<p). If the image of a mapping
is a singleton then the mapping is constant. The rank of a transformation is the
cardinality of its image. The set T of all transformations of A form a semigroup
under the operation of function composition of transformations and it is called the
full transformation semigroup denoted by T4 = (A, T). If 5 is a subsemigroup of T
then (A , 5) is called a transformation semigroup on A (or briefly a is), and we say
that 5 acts on A. (A, 5) is a permutation group if each elements s £ 5 acts on A
by permutation. We write a • s for the image of state a under the transformation
s, and we have (a • si)s2 = a • (S1S2) for all a 6 A, si,s2 € 5. It is a basic fact
of semigroup theory that every finite semigroup can be represented as a ts using

Cycle Structure in Automata and the Holonomy Decomposition 201

the right regular representation (S^S) where S acts on 5 1 by multiplication on
the right [3]. If (A, 5) is a transformation semigroup, we denote by {A, S) the
transformation semigroup with transformations S = {t \ t £ S or t is constant}.

Division. We say that a transformation semigroup (A, S) divides (B,T) denoted
by (A, S) | (B, T) if we can choose for all a £ A at least one a £ B as a lift and
and for each s £ S at least one s £ T as a lift, such that the following hold:

1. Each member of B (resp. T) is a lift of at most one element of A (resp. 5),
i.e. the (non-empty) lift sets are non-intersecting,

2. If a is any lift of a and s is any lift of s, then a • s is some lift of a • s, i.e. the
products are respected.

Denote the set of lifts of a state a by L(a) (and L(s) for a transformation s respec-
tively). Note that in general L(a) • L(s) C L(a • s), instead of being equal.

Ç \L(a • s)J action in (B, T)

a • s action in (j4, S)

Words and the free semigroup. [15] Let X the set of letters be called the
alphabet. A word over the alphabet X is a finite sequence of elements of X:
(xi,x2, • • • ,xn), Xi £ X. The empty word is denoted by A. X+ is the set of all
non-empty finite words. X+ is a semigroup under the operation of concatenation,
it is called the free semigroup. X* = X+ U {A} is the free monoid.

A word v £ X* is a factor of a word z £ X* if there exist words u, w £ X* such
that z = uvw. v \s a, left factor of 2 if there exists a word w £ X* such that z = vw.
A word w is primitive if it is not a power of another word. For any nonempty word
w, the smallest factor u such that w — un, n > 1 is the primitive root of w. We
also use the notation u = y/w.

2.2 Finite State Automata
By a finite state automaton, we mean a triple A = (A, X, S) where A is the (finite
nonempty) state set, X is the input alphabet and <5 : A x X —» A is the transition
function. We do not explicitly consider the output of the automaton as it can be
recovered from the state and the input symbol. We tacitly use the state as the
output.

We can naturally extend the transition function for words i.e. sequences of in-
put symbols: for the empty word 6(a, A) = a, and for arbitrary words u,v £ X*,
5(a,uv) = 5(S(a,u),v). There is a natural equivalence relation, the congruence in-
duced by A on words u = v if 5(a,u) = S(a,v) Va £ A, i.e. identifying words with

202 Attila Egri-Nagy and Chrystopher L. Nehaniv

h GSi H— (AuSi) 61GA1

ai € -4i

f 2 - A l ^ S 2
j (A2,52) b2£A2

a2 € /12

f3-.A2xA1^S3

Figure 1: State transition in the wreath product (A3 ,S3) I (A2,S2) ? (Ai ,5 i) .
The transformation (/3, /2, /1) is applied to state (a3,a2,ai) yielding (b3,b2,b\) =
(a3 • / 3 (a 2 , ai), ^2 • /2(^1)1 ai • /1)- The black bars denote the applications of func-
tions / 2 , / 3 according to hierarchical dependence. Note that the applications of
these functions happen exactly at the same moment since their arguments are the
previous states of other components, therefore there is no need to wait for the
other components to calculate the new states. We use the state as the output of
the automaton.

the same action on A. The characteristic semigroup S(A), also called the semi-
group of the automaton, is the set equivalence classes X+/ = of this congruence,
with associative operation induced by concatenation. With the characteristic semi-
group we can handle an automaton A as a transformation semigroup (A, S(A)).
Conversely if S is a semigroup then the corresponding automaton is As = (5 1 , 5) ,
where the transition function is the right action of S on S1.

An automaton A emulates another one B with states B if every computation
which can be done in B can be done in A as well, i.e. (B , S(B)) divides (A, 5(A)) .

Using automata terminology constant mappings in transformation semigroups
are often called resets. A permutation-reset automaton is an automaton such that
each of its inputs acts either as a permutation or a constant map on states.

The state transition graph D(A) of an automaton A = (A,X, S) is a digraph
with A as the set of vertices and (a, x, b) is a labelled edge if a • x = b, where
a, b £ A, x £ X. It is a loop-edge if a = b. A path is a sequence of edges (a*, Xi, bi)
1 < i < n with ai+i = bi for all 1 < i < n, and the label of the path is x\... xn. A
loop is a path with bn = a\.

2.3 Wreath Product Explained
Although the concept of the wreath product is not so complicated, it is not as
easy to present the intuitive idea how the loop-free cascaded product works. After
reading the formal definition a figure may shed light on how state transitions happen
in the product (Fig. 1). It is also a great help first to consider a simpler product

Cycle Structure in Automata and the Holonomy Decomposition 203

with no dependence between the components.
Let (An, Sn),..., (Ai, Si) be transformation semigroups called components.

The indices l , . . . , n are called coordinates. The direct product (An,Sn) x . . . x
(j4 i , Si) is the ts (A n x ... x A\, Sn x ... x Si) with the componentwise action

(an,..., ai) • (sn,..., si) = (an • s„,..., ai • si).

Direct product is also called parallel composition as the components' state tran-
sitions do not depend on each other, and the order of the components does not
really matter up to isomorphism.

Now we introduce an order-dependent connection between the components. Let
A = An x ... x Ai and Ta the full ts on A. Let S be the subsemigroup of Ta
consisting of all transformations s : A —> A satisfying the condition of hierarchical
dependence of coordinates. Denote pk : A —> Ak the /cth projection map, then for
each k = 1 , . . . , n there exists fk : Ak-\ x • • • x A\ —> Sk such that

Pk((tn, • • - ,tk+l,tk, • • • ,ti) • s) = tk • fk(tk-1, • • • ,fi) = t'k

where s € S, tk, t'k £ Ak, k = 1 , . . . , n.

That is, the new fcth coordinate t'k resulting from the action of s depends only
on the values of the old first k coordinates and on the transformation s. More-
over, it is given by acting with an element of Sk which depends only on s and
(tk-i, • • • ,t\). We can write this transformation as the ordered list of these func-
tions: s = (/ „ , . . . , / i) .

Then the transformation semigroup (A, S) = (An,Sn)l.. .l(Ai,S\) is the wreath
product of transformation semigroups (A n , S n) , . . . , (A\, Si). Reading from left to
right the last component is the top level of the hierarchy.

3 Holonomy Decomposition Theorem
The holonomy decomposition originates from Zeiger's method of proving the Krohn-
Rhodes Theorem [16, 17, 7]. This algorithm work by the detailed study of how the
semigroup S of an automaton (A, X, 5) acts on subsets of A. It looks for groups
induced by S permuting some set of subsets of A. These groups are called the
holonomy groups. These groups are the building blocks for the components of the
decomposition. As we go deeper in the hierarchy of the cascade composition we
have components that act on subsets with smaller cardinality.

The sketch of the algorithm to obtain a decomposition: First calculate the set of
images of transformations in S. From now on, let 1 denote this set extended by A
itself and its singletons. On T there is a preorder relation called subduction defined.
A subset P is subduction related to a subset Q if P is contained in a resulting set
of acting by some s £ S on Q, i.e. P C Q • s. The mutual relation of elements
induces an associated equivalence relation P = Q <==> P < Q and Q < P. The
set of equivalence classes are partially ordered by the subduction relation. The set
of equivalence classes and their partial order are called the subduction picture. The

204 Attila Egri-Nagy and Chrystopher L. Nehaniv

tiles Bp of a subset P (P 6 J, |P| > 1) are its proper subsets directly below it
in the subduction preorder. The union of its tiles equals to P. The length of a
longest strict path from a singleton to a subset P in the partial order of subduction
equivalence classes defines the height of the subsets within the equivalence class of
P. Equivalence classes with the same height are on the same hierarchical level. The
sets of tiles for each element Q G I form the tiling picture. The holonomy group
HQ of Q is the group (arising from elements of SL) permuting the tile set BQ of Q.
The component Hi of one hierarchical level i is the direct product of the holonomy
groups belonging to the representative elements of equivalence classes with height
i augmented with the constant mappings.

Theorem 1 (Holonomy Decomposition [6, 4]). Let (A, S) be a finite transformation
semigroup then (A, S) divides a wreath product of its holonomy permutation-reset
transformation semigroups (Bi,Ti\) I - • l (Bh^h)-

This strong formulation of part of the Krohn-Rhodes theorem is slightly different
from the original since the components here are groups extended with constants
and not simple groups and the divisors of the flip-flop. But these permutation-
reset components can be easily decomposed into flip-flops and groups. Moreover
the groups can be further decomposed into a series of simple groups using the
Lagrange Coordinate Decomposition Theorem and Jordan-Holder Theorem [8, 4].
Note that the top level of the hierarchy is the component with highest index, not
1.

4 Cycles in Automata

Definition 2. A graphical cycle in an automaton (A,X, S) is a cycle in its
state transition digraph together with a word w G X+, i.e. a sequence of states
ai,...,an n > 2, where the states in the sequence are pairwise distinct except
ai = an, and w = x\... xn-i, Xi G X such that ai • Xi = a^+i for all 1 < i < n — 1.
The word w = x\... xn-i is called the label of the cycle.

Since n > 2 a loop edge is not a graphical cycle, and also, since ai ^ di+i within
a graphical cycle, loop edges are not allowed.

Definition 3. An algebraic cycle in an automaton A = {A, X, ¿) is a permutation
group ({ai , . • •, a n } , (w)) for which ai = aj => i = j, n > 1, and w is a word in X+

such that ai • w = aj+i for all 1 < i < n, and an • w = a\.

The word w generates a cyclic group which acts faithfully on { a i , . . . , a n } by
permutations. (Of course (w) might not act by permutations on A.) Obviously
wn is the identity element. Moreover, n being greater than 1 excludes trivial one-
element groups. Note that loops are not generally algebraic cycles. The generator
of the algebraic cycle is w, and its label is wn.

Cycle Structure in Automata and the Holonomy Decomposition 205

5 Graphically Cycle-Free Automata
Definition 4. An automaton is graphically cycle-free if it does not have any graph-
ical cycle.

The very simple structure of graphically cycle-free automata is reflected in their
subduction pictures in the following way:

Lemma 5. (A, S) is graphically cycle-free iff on every height level in each subduc-
tion relation equivalence class there is only one element.

Proof: Let P, Q G I and P = Q but P ± Q. Since P, Q are finite |P| = |Q|. Clearly
by finiteness there is at least one x G Q such that x ^ P fi Q, otherwise P, Q would
be the same. Due to the equivalence of P and Q we have s,(6 5 bijective mappings
such that P = Q • s and Q = P • t and thus (st)n is the identity on Q for some
n > 0, by the finiteness of P, Q. Since x • s = x' ^ x while x • (st)n = x, there must
be a graphical cycle.

Conversely, a graphical cycle ensures the existence of an equivalence class with
at least two elements at height zero. •

Another way to think about the proof of this lemma is to recognize that for the
singleton subsets of the state set (at height zero) the equivalence classes are exactly
the strongly connected components of the automaton's state transition graph.

This result can be exploited in the decomposition algorithm since if the equiv-
alence classes are detected to all be singleton classes, then there is no need to
look for holonomy groups at all and the holonomy identity-reset ts's can be built
immediately.

6 Algebraically Cycle-Free Automata
It is a well-known result of algebraic automata theory that the star-free rational
languages are recognized by exactly those automata whose characteristic monoid
is aperiodic (having no nontrivial subgroup) [14]. It is also known that deciding
aperiodicity for a finite automaton is PSPACE-complete[2], We are interested in
this problem for certain derived automata that arise naturally in the holonomy
decomposition.

Intuitively one might expect that the state transition graph of an aperiodic
automaton contains no cycles at all, but this is not true in general: there might be
graphical cycles in it, while remaining aperiodic (see Fig 2). But with another type
of cycles the notion of aperiodicity can be expressed.

Definition 6. An automaton A = (A, X, <$) is algebraically cycle-free if it does not
have any algebraic cycle.

The property of algebraic cycle-freeness is tied up with the primitivity of words,
which act on some states as the identity.

206 Attila Egri-Nagy and Chrystopher L. Nehaniv

Lemma 7. An automaton A = (A,X, <5) is algebraically cycle-free iff for all states
a £ A and for all words w £ X+ such that a-w = a , one of the following statements
holds.

1. w is primitive.

2. w is not primitive but has primitive root и £ X+, i.e. w = un, and a • и = a.

Proof: If w is primitive, then we are done. Otherwise w = un where и is primitive.
Let's suppose indirectly that а и ф a. Let к be the least integer that a • uk = a
(1 < к < n). Then ({a,a • u,...,a • иfc-1},(u)) is a cyclic permutation group
(with at least two elements), therefore we have an algebraic cycle, contradicting
our assumptions.

The converse is obvious due to the fact that a trivial permutation group does not
constitute an algebraic cycle, and the conditions 1—2 allow only trivial permutation
groups. •

Remark 8. Obviously Lemma 7 holds even if a - z Ф a for some left factor z of w.

It is clear that in the absence of graphical cycles there cannot be any algebraic
cycle. Thus,

Proposition 9. If an automaton is graphically cycle-free then it is algebraically
cycle-free.

Now we show that aperiodic automata are exactly the algebraically (not the
graphically) cycle-free ones.

Theorem 10. The following are equivalent for an automaton A = (A, X, 6) with
corresponding transformation semigroup (A, S) :

1. A is algebraically cycle-free.

2. S is aperiodic.

3. Holonomy groups are trivial for (A,S).

Proof: (1) => (2): Suppose S is not aperiodic, then we have a cyclic group (v) in
S of order n > 2, where v £ X+ is a word representing the generator. Thus vn

is the identity of the cyclic group, v = v n + 1 and v ф v2. Therefore 3a such that
a • v Ф a - v2 and a • v = a • vn+1. Let a' = a • v, thus a' • vn = a' and since A is
algebraically cycle-free we can apply Lemma 7: let и = \/v™ = \Jv. then we have
a' • и = a', a' • v = a' and finally a • v2 = a • v, which is a contradiction.

(2) => (1): For the converse we use again an indirect proof: Suppose there is an
algebraic cycle, i.e. ({a i , . . . ,a n } , (w)) is a permutation group with ai £ A,w £ X +

and n > 1. Therefore Z n , the cyclic group with n elements, divides S. This cannot
happen when S is aperiodic.

Cycle Structure in Automata and the Holonomy Decomposition 207

x x

A x BV

Figure 2: Automaton A has an algebraic cycle ({1,2}, (a)). Automaton B has
graphical cycles ab, ba, but they are labelled with primitive words.

Figure 3: An automaton A with state set A = {1,2,3,4,5,6} and alphabet {x, y},
where x and y are transformations with x = (3 4 1 3 4 3),?/ = (4 3 6 6 4 2).

(2) (3): The components of the holonomy decomposition are all divisors
of the original semigroup, thus aperiodic semigroups have only trivial holonomy
groups, and wreath products and divisors of aperiodic transformation semigroups
are aperiodic. •

Corollary 11. An automaton A = (A,X,5) is aperiodic if and only if

Vo € A, w € X+, x • w = a => a • y/w = a.

The distinction between algebraically cycle-free aperiodic and nonaperiodic au-
tomata is rather subtle. Two automata having the same state-transition graphs
regarding their connectivity might belong to different classes depending on how the
input symbols act on the state set (Fig. 2).

7 Non-Aperiodic Automata
A main concern of the holonomy decomposition is to find the nontrivial holonomy
groups. Fortunately the tiling picture provides tools for locating the elements of X
for which there exist nontrivial holonomy groups.

Lemma 12. For an element Q of I in the tiling picture of (A S) if there is a
nontrivial holonomy group HQ, then in its set of tiles BQ there are at least two
distinct tiles ii, ¿2 such that t\ = t^-

208 Attila Egri-Nagy and Chrystopher L. Nehaniv

Figure 4: The tiling picture of automaton A in Fig. 3. The equivalence classes are
denoted by boxes. Equivalence classes with elements having nontrivial holonomy
groups are shaded. Dotted edges denote the 'tile of' relation.

Proof: HQ being nontrivial means that there are some pair(s) of tiles for which
there are transformations permuting them and thus they are mutually subduction
related. •

The converse is not generally true as we can see in the example of an automaton
(Fig 3) with tiling picture (Fig 4). For a trivial HQ the set of tiles BQ may
contain distinct equivalent tiles, see Fig 5. In order to determine whether we have
a nontrivial holonomy group for a Q £ 1 we define an extended automaton and
examine its cycle structure. Denote the equivalence classes of subduction relation
by Ei to En .

Lemma 13. If P £ E, and for some s £ S, P • s = Q such that Q EI (leaving
the equivalence class) then there is no transformation t £ S such that Q • t £ EI
(no way back to the original equivalence class).

Proof: Suppose there is such a t that Q = P • s and P' = Q t with P = P'. Due to
the equivalence we have P = P'-s" for some s" £ S, therefore Q-{ts") = P'-s" = P,
thus Q = P, which contradicts the original assumption that we leave the equivalence
class of P. •

Let's define EQ as the union of equivalence classes which contain at least one
tile of Q £ 1. Formally: EQ = U^nSq^e Then the tile automaton of Q is

Cycle Structure in Automata and the Holonomy Decomposition 209

X

CnÂgJ.'

X

Figure 5: Two tile automata of automaton A in Fig. 3. ^4.{i,3,4} is trivial, while
-4(2,3,6} is nontrivial with generator word y.

defined as AQ = (EQ U 7), where i is a sink state, the input alphabet X is
the same as the original automaton's, and 7 is the natural extension of S to act on
subsets of A providing that if the image is not in some Ei then it is c. This way
? represents going to another equivalence class not contained in EQ. but according
to Lemma 13 this can be represented as a sink since there is no way to come back.

The equivalence classes in EQ form strongly connected components in AQ.
When determining the nontriviality of HQ we look for algebraic cycles in these
components. We look not simply for independent algebraic cycles in each compo-
nent as a word of a cycle might not permute the tile elements in another component,
but for parallel algebraic cycles. This way we can recast the characterization of a
holonomy group element in terms of algebraic cycles. More formally:

Proposition 14. HQ is nontrivial iff there exists a word w 6 A+ and BQ can be
partitioned into {Ti,..., Tk) subsets such that either

210 Attila Egri-Nagy and Chrystopher L. Nehaniv

1. Ti consists of exactly one tile and Ti • w = Ti, or

2. TI • (W) C BQ Pl EJ for some 1 < j < N, and (TI • (w), (w)) is an algebraic
cycle in AQ

holds for all Ti, 1 < i < k, and (2) must hold for at least one Ti.

In short the proposition characterizes when the transformation induced by w
nontrivially permutes BQ. This transformation is clearly a nontrivial holonomy
group element. From Lemma 13, Ti • wn € (BQ fl Ej) follows for any n > 0.
Therefore the algebraic cycles contained in BQ generated by W are all disjoint. If
all intersections (BQDEJ) are singletons, or none of them contains an algebraic cycle
then HQ is trivial. This fact can be exploited in efficient decomposition algorithms
of the holonomy decomposition by excluding cases where the construction of the
holonomy group should not be attempted.

8 Conclusions
Using an implementation of the holonomy decomposition we could get new insights
about its working mechanism and found a relation between the cycle structure of
an automaton and its holonomy components. We also showed that detecting cycles
with primitive words helps in excluding elements of T when searching for holon-
omy groups. Currently we are investigating the possibility of efficient construction
of holonomy groups by using the extended tile automata replacing the current
algorithm which is based on a breadth-first search in the space of semigroup ele-
ments. These results will eventually lead to improvements of the decomposition
algorithms providing efficient and scalable tools for attacking real-world problems
such as analyzing metabolic networks [13], understanding biological complexity [12],
AI applications [11] and so on.

References
[1] Michael-A. Arbib, editor. Algebraic Theory of Machines, Languages, and Semi-

groups. Academic Press, 1968.

[2] Sang Cho and Dung T. Huynh. Finite-automaton aperiodicity is pscpace-
complete. Theoretical Computer Science, 88:99-116, 1991.

[3] A.H. Clifford and G.B. Preston. The Algebraic Theory of Semigroups (Math-
ematical Survey, No 7), volume 1 of Mathematical Survey. American Mathe-
matical Society, 2nd edition, 1967.

[4] Pál Dömösi and Chrystopher L. Nehaniv. Algebraic Theory of Finite Au-
tomata Networks: An Introduction, chapter 3, The Krohn-Rhodes and Holon-
omy Decomposition Theorems. SIAM Series on Discrete Mathematics and
Applications, 2005.

Cycle Structure in Automata and the Holonomy Decomposition 211

[5] Attila Egri-Nagy and Chrystopher L. Nehaniv. GrasperMachine, Com-
putational Semigroup Theory for Formal Models of Understanding,
(http: / /graspermachine.sf .net) . , 2003.

[6] Samuel Eilenberg. Automata, Languages and Machines, volume B. Academic
Press, 1976.

[7] Abraham Ginzburg. Algebraic Theory of Automata. Academic Press, New
York, 1968.

[8] Marshall Hall. The Theory of Groups. The Macmillan Company, New York,
1959.

[9] Kenneth Krohn and John Rhodes. Algebraic theory of machines. I. Prime
decomposition theorem for finite semigroups and machines. Transactions of
the American Mathematical Society, 116:450-464, April 1965.

[10] Chrystopher L. Nehaniv. Algebraic engineering of understanding: Global hier-
archical coordinates on computation for the manipulation of data, knowledge,
and process. In Proc. 18th Annual International Computer Software and Appli-
cations Conference (COMPSAC 94), pages 418-425. IEEE Computer Society
Press, 1994.

[11] Chrystopher L. Nehaniv. Algebra and formal models of understanding. In
Masami Ito, editor, Semigroups, Formal Languages and Computer Systems,
volume 960, pages 145-154. Kyoto Research Institute for Mathematics Sci-
ences, RIMS Kokyuroku, August 1996.

[12] Chrystopher L. Nehaniv and John L. Rhodes. The evolution and understand-
ing of hierarchical complexity in biology from an algebraic perspective. Arti-
ficial Life, 6:45-67, 2000.

[13] John L. Rhodes. Applications of Automata Theory and Algebra with the Math-
ematical Theory of Complexity to Finite-State Physics, Biology, Philosophy,
Games, and Codes, book submitted for publication.

[14] M. P. Schiitzenberger. On finite monoids having only trivial subgroups. Infor-
mation and Control, 8:190-194, 1965.

[15] H. J. Shyr. Free monoids and languages. Hon Min Book Company, Taichung,
Taiwan, 2001.

[16] H. Paul Zeiger. Cascade synthesis of finite state machines. Information and
Control, 10:419-433, 1967. plus erratum.

[17] H. Paul Zeiger. Yet another proof of the cascade decomposition theorem for
finite automata. Math. Systems Theory, 1:225-228, 1967. plus erratum.

http://graspermachine.sf.net

Acta Cybernetica 17 (2005) 213-224.

A Hierarchical Evaluation Methodology in Speech
Recognition

Gábor Gosztolya* and András Kocsor*

Abstract
In speech recognition vast hypothesis spaces are generated, so the search

methods used and their speedup techniques are both of great importance. One
way of getting a speedup gain is to search in multiple steps. In this multi-
pass search technique the first steps use only a rough estimate, while the latter
steps apply the results of the previous ones. To construct these raw tests we
use simplified phoneme groups which are based on some distance function
defined over phonemes. The tests we performed show that this technique
could significantly speed up the recognition process.

Keywords: speech recognition, search methods, multi-stack decoding, multi-
pass search, phoneme grouping.

1 Introduction
Automatic speech recognition (ASR) is a pattern classification problem [1] in which
a continuously varying signal has to be mapped to á string of symbols (the phonetic
transcription). Besides the identification of speech segments with grammatical
phonemes [2], efficient searching in the induced hypothesis space [3] is of great
importance as well. This work is related to both areas: first we give a hierarchical
scheme of the Hungarian phonemes, then we try to exploit this structure in the
search process.

In this paper we want to construct a multi-pass search method where the differ-
ent steps are based on the selection of the different phoneme groups used. However
this construction of the phoneme groups is not trivial, so the choice of the algorithm
we use heavily affects the speed and recognition accuracy of the speech recognition
system.

The structure of this paper is as follows. First we define the speech recognition
problem and the search task. Then we construct a phoneme grouping method based
on a distance function between phonemes. Lastly, after presenting and analyzing
the test results, we mention some suggestions for future study.

* Research Group on Artificial Intelligence of the Hungarian Academy of Sciences
and University of Szeged, H-6720 Szeged, Aradi vértanúk tere 1., Hungary, e-mail:
{ggabor,kocsor}0inf.u-szeged.hu

213

214 Gábor Gosztolya and András Kocsor

2 Search Spaces in Speech Recognition
In speech recognition problems we have a speech signal represented by a series of
observations A = a\a2 • • - at, and a set of possible phoneme sequences (words or
word sequences) which will be denoted by W. Our task is to find the word w £ W
defined by

ui = arg max P(w\A), (1)
wEW

which, using Bayes' theorem, is equivalent to the following maximization problem:

P(A\w) • P(w)
w = arg max v ' , . (2)

ywe\v P(A) K '

Further, noting the fact that P(A) is the same for all w € W, we have that

w = arg max P(A\w)P(w). (3) w£W

Speech recognition models can be divided into two types (the discriminative and
generative ones), depending on whether they use Eq. (1) or Eq. (3). Throughout
this paper we will apply the customary, generative approach [4].

Unified view

Both the generative and discriminative models exploit frame-based and/or segment-
based [5] features, and this fact allows us to have a unified framework of the frame-
and segment-based recognition techniques. To make this clearer, we will provide
a brief outline of this framework along with the hypothesis structure that will be
generated.

Now let us commence with some definitions. Let us define w as 0i02. . .0 n ,
where Oj is the jth phoneme of word w. Furthermore, let A\, A2,..., An be
non-overlapping segments of the observation series A = a\a2...at, where A} =

1 . • • atj, j £ {1 , . . . ,n}. An Aj segment is defined by its start and end times
and will be denoted by [tj-i,tj]. For a segmentation A = A\, A2,..., An we
put the values of the time indices corresponding to each segment into a vector
Tn = [io , i i , . . . , i„] (1 = to < 11 < . . . < tn — t). We make the conventional as-
sumption that the phonemes in a word are independent so that P(A\w) can be ob-
tained from P(Ai|oi), P(A2\o2),..., P(An\on) in-some way. To calculate P(A|ui),
various aggregation operators can be used at two distinct levels. In the first one
the P(Aj\oj) probability values are supplied by a g\ operator, i.e.

P(Aj\oj) = gidtj-i^j^Oj),

which provides an overall value for measuring how well the Aj segment repre-
sents the Oj phoneme based on local information sources. In the second one,
another operator (g2) is used to construct P (A | k ;) using the probability values
P (j 4 i | o i)) . : . , P (A n | o n) .

A Hierarchical Evaluation Methodology in Speech Recognition 215

Frame-based approach

The well-known Hidden Markov Model (HMM) [6] is basically a frame-based ap-
proach, i.e. it handles a speech signal frame by frame. Usually a Gaussian Mixture
Model (GMM) is applied to compute the P(ai\oj) values (for delta and delta-delta
features neighboring observations are also required) and for the Aj segment the
gi([tj_x,tj],Oj) value is defined by

ti
coj-p(ai-k---ai+k\0j), (4)

i=tj~ i

where 0 < c0j < 1 . Practically speaking, g\ includes all the information we have
when we are in a particular state of a HMM model. We note here that, instead of
GMM, Artificial Neural Networks (ANNs) and other machine learning algorithms
that can be used for density estimation are also viable. This alternative provides a
way for creating model hybrids. As for the P(A\w) value, the g2 operator is defined
by

71 — 1
P i A M l l i l - C o ^ P i A ^) . (5)

j = 1

Segment-based approach

In the segment-based speech recognition approach - like the SUMMIT system of
MIT [7] or our OASIS [8] - g\ will usually be the direct output of some machine
learning algorithm using features that describe the whole [i j - i , tj] segment. Among
the many possibilities the most conventional choice of g2 is simply to multiply the
probabilities, but in earlier works we showed that using other operators can be
beneficial for both the speed and performance [9]. In the following we will stick
to multiplication, but the improvements discussed here could also be implemented
using other aggregation operators.

The hypothesis space

The task of speech recognition is essentially a selection problem over a Cartesian
product space where the first dimension is a set of word hypotheses, while the
second is a set of segmentations. Given a set of words W, we use Prefk(W) to
denote the fc-long prefixes of all the words in W having at least k phonemes. Let

Tfc = { [i o . i i , . . . , i f c] : l = i o < i i <---<tk<t} (6)

be the set of sub-segmentations made of k segments over the observation series
ai<i2 .. .at. The hypotheses will be object pairs, i.e. they are elements of

oo
ff= (J (Prefk(W)xTk).

k=0
(7)

216 Gábor Gosztolya and András Kocsor

We will denote the root of the tree - the initial hypothesis - by ho =
(0, [to]) (h0 G H). Here Prefx(W) x T1 will contain the first-level nodes.
For a (oiO2...Oj,[t0,...,tj]) leaf we link all (oio2 . . . OjOj+i, [t0, • • •, t j , t j + i]) e
Prefj+l(W) x nodes.

Now we need to evaluate the nodes of the search tree. To this end let the
gi and 32 functions be defined by some aggregation operators. Then, for a node
(0102 .. .Oj,[to,... , t j]) , the value is defined by

92(9i([to,ti],oi),... ^ r d t j - i ^ j l o j)) . (8)

Note that, in practice, it is worth calculating this expression recursively. After
defining the evaluation methodology we will look for a leaf with the highest prob-
ability.

This definition in typical circumstances leads to a huge hypothesis space, where
a full search will be impractical because of the big run time and memory re-
quirements. This leads us to employ heuristics like the well-known Viterbi beam
search [10] or our choice, the multi-stack decoding algorithm [11].

3 Clustering the Phoneme Set

In this section we discuss the technique we used to create smaller, more compact
phoneme groups. First we define two novel, similar functions between phonemes,
prove that they have the right sort of properties to be distance functions, then
utilize them in the phoneme-clustering problem.

There is no simple answer to the problem of how we should construct the
phoneme groups mentioned above. We might base it on previous grammatical
knowledge or use the confusion matrix of the phoneme classifier. The justification
for the latter option is that the recognition process is already heavily based on the
phoneme classifier.

A classifier gets some set of observations, and its task is to classify this set into
one of the D. = {wi,w2 , . . . ,u>k} classes. A confusion matrix A is constructed in
such a way that a^- is the number of phonemes belonging to u>j from a selected
test set which we classified as WjS by the classifier [12]. In our case the classifier
is used to categorize the parts of speech into one of the phoneme classes. The
confusion matrix of a good classifier is close to a diagonal matrix, which is why we
will concentrate on the number of misclassified items (i.e. the number of examples
that were incorrectly classified).

Grouping phonemes is a standard clustering problem [13]: some points (here,
the phoneme classes) are to be assigned to a certain number of clusters (in our case,
phoneme groups). There are some quite general algorithms for this task. The one
we are going to use needs a distance function for two clusters, which will be defined
below, but first we will explain how this algorithm works.

At the start each phoneme will be considered as different clusters. Then, in each
step, we find those Ci and Cj clusters where V(Ci,Cj) is minimal, and combine

A Hierarchical Evaluation Methodology in Speech Recognition 217

Table 1: An example of a confusion matrix
1 2 3 4 5 « 7 8 9 10 11

1 2502 3 96 35 4 0 0 4 8 0 12
2 18 965 3 24 3 0 0 0 5 1 49
3 87 8 875 19 2 0 0 5 11 0 18
4 43 11 16 271 1 1 0 1 2 0 12
5 12 2 3 2 2250 257 80 101 53 5 48
6 0 1 0 0 51 299 17 22 8 24 17
7 1 0 0 0 46 31 208 6 1 15 5
8 3 4 3 1 70 39 8 5235 111 19 116
9 7 1 6 3 19 10 2 97 461 2 77

10 1 0 0 0 12 88 25 62 11 830 8
11 39 71 21 31 38 23 19 102 367 18 2316

them. We repeat this until T>(Ci, Cj) > L, where L is a parameter. (See Appendix
A for the pseudocode of this algorithm.)

To define our novel distance functions first let A! be a normalized matrix for
the confusion matrix A of the applied phoneme classifier. It takes the form

k

We can assume that Yhk ak,j 0, otherwise it would mean that the jth phoneme
has no examples in the test database. Next we define a distance function based on
this A' matrix. Let

4 , =
00

-logia'ij)
-log{a'jti)
min(~log(a' id), -log^ t))

if i = j
if a'ij = a'j i = 0 and i ± j
if a'jti = 0 and a'itj j- 0
if a(j = 0 and a'^ ± 0
otherwise,

(9)

and let

(0 i i i = j
djj = I oo if a'itj = a!u = 0 and i ± j (10)

[-log((a'itj + a'ji)/2) otherwise.

Now let D' be the output of some shortest path-finding algorithm with the input
of the D1 or D2 matrix. (We can choose either of them, but of course if we use
both, this choice leads to twice as many test cases. The figures we obtained can
be seen in the results section.) D' is a distance function, moreover it satisfies the
criteria of being a metric because

218 Gábor Gosztolya and András Kocsor

Figure 1: Number of phoneme groups (classes) - L limit diagram for the four
distance-variations; d1 and d2, respectively. The A and C curves belong to Vmin,
while the B and D curves belong to the T>max group distance function.

• = o

• d'u < d i k + d'k j

Now we have to define the distance T>(Ci,Cj) of the clusters Ct and Cj, when we
have only the d'(xi,yi) values (the distance between different phonemes). To do
this we have two straightforward options [13]:

Vmin{Ci,Cj) = minX:y{d'(x,y)\x 6 City £ Cj}, (11)

and
Vmax(Ci,Cj) = maxX!y{d'{x,y)\x € City € Cj}. (12)

The former tends to create longer, larger clusters, while the latter usually creates
more compact ones. In our experiments we tested both versions.

We should mention here that the use of T>max in this algorithm could lead to a
nondeterministic case if, at any given point, there exist some clusters Ci, Cj and
Cfc such that T>max(Ci,Cj) = T>max(Ci, Ck)- Note here that Vmin is not a metric
because in some cases the triangle inequality does not hold: there exist Ci, Cj and
Ck clusters such that Vmin(Ci,Cj) ^ Vmin(Ci,Ck) 4- Vmin(Ck,Cj).

3.1 Tests
Applying the clustering algorithm (using one of the above V functions) will lead
to a series of unions and a series of distance values. Based on them we can choose
the possible values of the limit L, which will result in phoneme groups that will be
used in the recognition process. Obviously, good L values are those where there is
a nice gap between successive distance values in the output.

After examining Figure 1 we identified those bigger flat regions in each curve.
For each of them we selected three Ls, resulting in the same number of phoneme

A Hierarchical Evaluation Methodology in Speech Recognition 219

groups, which were later used in the multi-pass recognition method. The corre-
sponding recognition steps were called Pass 1 (pi), Pass 2 (p^) and Pass 3 (P3),
with the number of phoneme groups varying from 27 to 34, from 17 to 21 and
from 10 to 13, respectively. The default phoneme set was labelled po and had 52
phonemes.

4 The Search Process
Given the phoneme groups - and hence the hypothesis space - we still have to
search for the best hypothesis. There are standard search heuristics for this task,
from which we chose the multi-stack decoding algorithm. Moreover, there is the
possibility of constructing multi-pass methods where there are multiple steps in the
search process. Here we decided to apply this idea using the already constructed
phoneme groups.

Multi-pass Search Strategies

In general, multi-pass methods work in two or more steps: in the first pass
the less likely hypotheses are discarded because of some condition requiring low
computational time. Then, in the later passes, only the remaining hypotheses
are examined by more complex, reliable evaluations, which will approximate the
probabilities of the hypotheses more closely. (In the common search methods only
the last pass remains, so more hypotheses are scanned there, making the process
more time-consuming.)

To speed up the earlier steps, we need to construct faster phoneme classifiers,
and the usual way of doing this is to reduce the number of features. (In our system,
where ANNs are used, it also leads to a lower number of hidden neurons.) Here
the number of phoneme groups was decreased. In the first pass a search with a
very restricted phoneme set was performed. Then, in the later passes, more and
more detailed phoneme groupings were used, where the dictionary consisted of the
'winning' words of the previous level. Obviously, during the last pass we had to use
the original phoneme set to get only one word as a result, not a set of words. At
each level we employed the multi-stack decoding algorithm in the search process.

The Multi-stack Search Method

The multi-stack decoding algorithm [11] is one of the heuristic search methods
we mentioned earlier, and we chose this one as our basic search technique. To
discuss the method first we have to give a definition. A stack is a structure for
keeping hypotheses in. Moreover, we use limited-sized stacks: if there are too
many hypotheses in a stack, we prune the ones with the highest cost.

In this algorithm we assign a separate stack to each time instance ti and store the
hypotheses in the stack according to their end times. In the first step we place ho
(the initial hypothesis) into the stack associated with the first time instance, then,
advancing in time, we pop each hypothesis in turn from the given stack, extend

