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1 Introduction

In this work, the boundary value problems (BVPs) for parameter dependent degenerate
differential-operator equations (DOEs) are considered. Namely, equations and boundary
conditions contain small parameters. These problems have numerous applications in PDE,
pseudo DE, mechanics and environmental engineering. The BVP for DOEs have been studied
extensively by many researchers (see e.g. [1,3,4,7-10,12-17,19-26,28,29] and the references
therein). A comprehensive introduction to the DOEs and historical references may be found
in [3,10,14-16,29]. The maximal regularity properties for DOEs have been studied e.g. in
[1,4,11,19-22,24,25,28,29]. DOEs in Banach space valued function class are investigated e.g.
in [2,4,13,14,20,23,25,28,29]. Nonlinear DOEs are studied e.g. in [3,20,24,25]. The Fredholm
property of BVP for elliptic equations are studied e.g. in [2,3,7].

The main objective of the present paper is to discusse the initial and BVP for the following
nonlinear degenerate parabolic equation

ou 1 o2y

5 + k;lak(Xk)Txi + B((t, X, u,D[l]u)>u = F(t, X, u,D[l]u), (1.1)
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where a;(x) are complex valued functions, B and F are nonlinear operators in a Banach space
E and

8[1]1/[ 8[1]u amu n
pily = , P , x=(x1,X2,...,%,) € G= 0,by),
(E)x] x> 8xn> (21, %2 ") 11;11( k)
olily

Dlily = :
k ox;

a i
= |:x06k(bk _ xk)ﬁkaxk:| u(x), 0 < ay, ﬁk <1

First, we consider the BVP for the degenerate elliptic DOE with small parameters

n ol2] noogq ol
Zekak(xk)—u + A(x)u+Au+ ) e Ap(x) o f), (1.2)
k=1 -

ox? = Oxp
where a; are complex-valued functions, ¢; are small parameters, A(x) and Ai(x) are linear
operators, A is a complex parameter.
Namely we prove that, for f € L,(G;E), largA| < ¢, 0 < ¢ < 7 and sulfficiently large |A|,
problem (1.2) has a unique solution u & Wl[,z] (G;E(A),E) and the following coercive uniform
estimate holds

i

n 2 v i
Y LA e
k=1i=0

Especially, it is shown that the corresponding differential operator is positive and also is a
generator of an analytic semigroup. Then by using this result, we prove the well-posedeness
in L, (G; E) to initial and BVP for the following degenerate abstract parabolic equation with
parameters

olily

ox +lAull, ey < ClfIIL, ey

Ly(GE)

M +) skak(xk)aaxz + A(x)u = f(x,t), te (0,T), x€G. (1.3)

Finally, via maximal regularity properties of (0.3) and contaction mapping argument we de-
rive the existence and uniqueness of solution of the problem (1.1).

Note that, the equation and boundary conditions are degenerated on all edges of bound-
ary G. Moreover, it happened with the different rate at both boundary edges.

In application, the system of degenerate nonlinear parabolic equations is presented. Par-
ticularly, we consider the system that serves as a model of systems used to describe photo-
chemical generation and atmospheric dispersion of ozone and other pollutants. The model
of the process is given by initial and BVP for the atmospheric reaction—advection—-diffusion
system having the form

oy & 02y, olll 3
Pl k; aki(x)TxI% + bki(x)aTck(”iwk) + k; diug + fi(u) + gi, (1.4)
where
x € Gy ={x = (x1,x2,%3), 0 < x¢ < b},

u =ui(x,t), i,k=1,23, u=u(xt)=(u1,uzuz), te€(0,7T)

and the state variables u; represent concentration densities of the chemical species involved
in the photochemical reaction. The relevant chemistry of the chemical species involved in the
photochemical reaction and appears in the nonlinear functions f;(u), with the terms g;, rep-
resenting elevated point sources, a;(x), by;(x) are real-valued functions. The advection terms
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w = w(x) = (w1(x),wz(x),ws(x)), describe transport from the velocity vector field of at-
mospheric currents or wind. In this direction the work [11] and references there can be
mentioned. The existence and uniqueness of solution of the problem (1.4) is established by
the theoretic-operator method, i.e., this problem reduced to degenerate differential-operator
equation.

Modern analysis methods, particularly abstract harmonic analysis, the operator theory, in-
terpolation of Banach spaces, semigroups of linear operators, microlocal analysis, embedding
and trace theorems in vector-valued Sobolev-Lions spaces are the main tools implemented to
carry out the analysis.

2 Notations, definitions and background

Let v = (x) be a positive measurable function on 3 C R" and E be a Banach space. Let
Ly, (€); E) denote the space of strongly measurable E-valued functions defined on () with the
norm

1y, = 10,y = (I )dx), l<p<o

Let p =(p1,p2,---,Pn)- Lpy(G;E), G = IT{—1(0, bx) will denote the space of all E-valued
p-summable functions with mixed norm, i.e., the space of all measurable functions f defined
on G equipped with norm

Pn
P2 Py Pn—1

P1
HfHLm(G;E) = / /(/f dxl) dxy dx, < 0.

For v(x) = 1 we will denote these spaces by L,(();E) and Ly(G;E), respectively (see
e.g. [5] for E = C).
The Banach space E is called an UMD-space if the Hilbert operator

(Hf) @) —tim [ L)

e—0 ‘x y‘>g X — y

N

“—==dy

is bounded in L,(R,E), p € (1,00) (see e.g. [6] ). UMD spaces include e.g. Ly, I, spaces,
Lorentz spaces Ly, and Lorentz—Morrey spaces RP%*, when p, g € (1,00), A € [0, n) [18].

Let E; and E; be two Banach spaces continuously embedding in a locally convex space.
By (E4, Ez)(,’p, 0 <6 <11<p < oo we will denote the interpolation spaces obtained from
{Ej, E2} by the K-method [27, §1.3.2].

Let Ep and E be two Banach spaces and Ej is continuously and densely embeds into
E. Let us consider the Sobolev-Lions-type space ngy(a, b; Eo, E), consisting of all functions

u € Ly, (a,b; Ey) that have generalized derivatives u(™) € L, (a,b; E) with the norm

e, = vy, ooy = 10ty o) + 18 iy < -
Let
wii = wll(0,1; Eo, E)

= {u tu € Ly(0,1;Eo), ul™ € L,y(0,1;E), [l = N2l 01,20 + Hu

< 0.
L,(0,;E)
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Now, let we define E-valued Sobolev-Lions-type spaces with mixed L, and Ly, norms. Let
ap(x) = " (b — x)™,  a = (a1,a2,), p=(p1,p2,---, Pn)-
Consider E-valued weighted space defined by
Wil (G, E(A), E)

almly
ax}!

n
[m]
Z%me%@fﬁ%ﬁe%@f%WM@ZWM@W+E’
! k=1

< oo}.
Lp(G;E)

Let ¢, be small parameters and &€ = (e1,€2,...,€,). We denote by ngv(Q; Ey, E) the space
of all functions u € Ly, ((); Eg) possessing generalized derivatives % € Lp (% E) with the
parametrized norm

n

[l im0 py = 4lle, 00k T ,;Ek

"u

R < 0.
ax,’f

Lpy (CUE)

For definition of R-sectorial operator see e.g. [7, p. 39]
In a similar way as in [21, Theorems 2.3, 2.4] we have the following result.

Theorem 2.1. Assume the following conditions be satisfied:

(1) v = y(x) is a weight function defined on domain () C R" satisfying A, condition;

(2) E is a UMD space, A is a R-sectorial operator in E and py € (1,00); B = (B1,B2,---,Bn);

(3) there exists a bounded linear extension operator from W', ((0; E(A), E) to Wi, (R"; E(A), E).

Then, the embedding
m LBy,
DﬁWP/Y(Q’E(A)IE) C LP/'Y<Q;E(A1 m }))

is continuous and for 0 <y <1 — %' 0 <h < hy < oo the following uniform estimate holds

n u _(1_
ﬂgkm HDD‘”HLM(Q;E(APWA)) < I \[ulln (ouEa)E) T 5 y)H”HLm(Q,-E)

forallu € Wy, ((; E(A), E).

Consider the BVP for the degenerate ordinary DOE with parameter

Lu = ea(x)ul? (x) + (A(x) + Mu(x) = f, (2.1)
my . m .
Liu=Y e6ull(0)=0, Lu=Y igulll)=0, x€(0,1), (2.2)
i=0 i=0
where ull = [x71(1 —x)”%]iu(x), 0< <10 = %—I— m, Yo = min{7y1, 72}, my €

{0,1}, é;, B; are complex numbers; A(x) is a linear operator in a Banach space E for x € (0,1),
¢ is a small positive and A is a complex parameter.
We suppose 6, # 0, B, # 0 and

X
/ z7M(1—z) "dz < co.
0
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Consider the operator B; generated by problem (1.1)—=(1.2) for A =0, i.e.,

D(B) = W (0,1 E(A), E, Ly)
= {u cu e WH(0,1E(A),E), Liu =0,k = 1,2},
Beu = —ea(x)ul? + A(x)u.

Condition 2.2. Assume the following conditions are satisfied:

(1) Eisa UMD space and y(x) = x"1(1—x)",0 < 7 < 1-— %,1 <p <o ae C([0,1]) and
a(x) < 0forx € (0,1);

(2) A is a R positive operator in E and A(x)A~Y(xo) € C([0,1]; B(E)) for x, xo € (0,1).

By reasoning as in [21, Theorem 5.1] and by using the method used in [22, Theorem 1] we
get the following theorem.

Theorem 2.3. Assume that Condition 2.2 holds. Then problem (2.1) has a unique solution u &
W[ ] +(0,1,E(A),E) for f € Ly(0,1;E) and |argA| < ¢ with sufficiently large |A|. Moreover, the
followmg uniform coercive estimate holds

YA et

i=0

yll
I, e * 148l 01) < AL 01

In a similar way as in [25, Theorem 3.1] we obtain the following theorem.

Theorem 2.4. Suppose the Condition 2.2 is satisfied. Then, the operator By is uniformly R-positive in
L,(0,L;E).
p 7 s

3 Degenerate elliptic equations with parameters

Consider the BVP for the following degenerate partial DOE with parameters

8[2] ollly
Zskak Xr) o 2 + A(x)u+ Au+ ZsiAk X)=— ox, = f(x), (3.1)
M1 . (i M2 )
Lyu = Zsk‘ ity (Gro) = 0, Lipu = Zek‘ ,Bkzuk (Gky) =0,
i=0 i=0

for x¥) € G, where A(x) and Ag(x) are linear operators, u = u(x), & are small parameters,
Oki, Bri are complex numbers, A is a complex parameter, my; € {0,1} and

alily . a1
— = | xM% (b — x)"F —| u(x), 0 <y, ay <1,
ax;{ k ( k k) axk ( ) > Rk 2k
i 1 )
Tik = aox = min{ax, aox},

— + _—,
2 2p(1 — agp)
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ay are complex-valued functions and

n
x=(x1,x2,...,%,) €G= H(O,bk),
k=1

GkO = (x1/x2/ coo s Xk—1, O/ X417+ /xn)l Pk S (1100)/
Gkb - (xl/ X2, Xk—1, bk/ xk+l/ ey xn);

R = (x1,%2, ..., X1, X1, - - -, Xn) € G = H(O,b]-).
ik

x(

Let

n

a = a(x) = [ Jap™ (b — x)">.
k=1

Remark 3.1. Under the substitutions
X
T = /0 x;“k(bk—xk)_“kdxk, k=1,2,...,n

the spaces L, (G; E) and Wﬁ (G; E(A), E) are mapped isomorphically onto the weighted spaces
Lyz(G;E) and WI%,& (G;E(A), E), respectively, where
= d 7 7 bi — — ~
G=TT(05), b = /0 X (b — )"y, 8(T) = a(x1(11), %2(T2), - - X (T2))-
k=1

Consider the principal part of (3.1), i.e., consider the problem

n ol2ly
) ekak(xk)—a 5>+ A(x)u+Au = f(x), (3.2)
k=1 Xk
o ik (7] © Tik [i]
Y €6y, (Gro) = 0, & Britty, (Gr) = 0.
i=0 i=0

Condition 3.2. Assume

(1) E is a UMD space, y(x) = [Ti_q X" (bx — x¢)"%, where 0 < ayg, age < 1— ﬁ, pr € (1,00),
5kmk1 # 0I ﬁkmkz # O;

(2) A(x) is a uniformly R-positive operator in E, A(x)A~1(x) € C(G;L(E)), x € G;

(3) ar(x) € Ct"(G) and ar(xx) < 0 for x; € (0, by).
First, we prove the separability properties of the problem (3.2).

Theorem 3.3. Assume that Condition 3.2 holds. Then problem (3.2) has a unique solution u &
WI[,Z,,]X(G;E(A),E)forf € Ly(G;E), |arg A| < @ with sufficiently large |A| and the following coercive
uniform estimate holds

n

Y YA

k=1i=0

olly

oxi

+ [ AullL, ey < ClfllL, i) (3.3)
k

Lp(G?E)
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Proof. Consider the BVP
(L+Au = ar(x)e DEu(xr) + (A(xr) + () = f(x), (3.4)

Ll]‘u =0, ]: 1,2, X1 € (O,bl),

where L; are boundary conditions of type (3.2) on (0, b1). By virtue of Theorem 2.3, problem
(3.4) has a unique solution u € W;[ﬁ]a (0,b1;E(A),E) for f € L, (0,b;E), largA| < ¢ with
sufficiently large |A| and the coercive uniform estimate holds

+ ||AuHLp1(O,b1;E) < CHfHL,,l(O,bl;E)‘

2 i
YA ez |ful
j=0

Now, let us consider the following BVP

Moy

2
Z ekak(xk)DE}u(xl,xZ) + A(xy, x2)u(xq,x2) + Au(xy, x2) = f(x1,x2), (3.5)

Lyu=0, Lpu=0 k=12 x1,x € Gy=(0,b1)x(0,b2).

Let p» = (p1,p2) and a(2) = (ay,az). Since Ly, (0,b2; Ly, (0,b1); E) = Lp,(Gy; E), the BVP
(3.5) can be expressed as

262D u(x2) + (Bey (x2) + Mu(x2) = f(x2), Loju=0, j=1,2,

for x; € (0,b1), where B, is a differential operator in L, (0,by; E) for xo € (0,b2), generated
by problem (3.4). By virtue of [3, Theorem 4.5.2], L, (0, by; E) € UMD for p; € (1,0). Hence,
by [28, Corollary 4.1] the space Ly, (0,by; E) satisfies the multiplier condition. Moreover, the
Theorem 2.4 implies the uniform R-positivity of operator B,. Hence, by Theorem 2.3, problem

(3.5) has a unique solution u € WSN(Z)(Gz;E(A);E) for f € Lp,(Go;E), |argA| < ¢ with

sufficiently large |A| and (3.3) holds for n = 2. By continuing this we obtain the assertion. [

Theorem 3.4. Let the Condition 3.2 hold and let Ak(x)A_(%_V)(x) € C(GL(E)) for0 < v < 3.
Then, problem (2.1) has a unique solution u € WEL(G;E(A),E)forf € Lp(G;E), |arg A| < @ with
sufficiently large |A| and the coercive uniform estimate holds

Z Zw

Proof. By assumption and by Theorem 2.1, for all # > 0 we have the following Ehrling—
Nirenberg-Gagliardo-type estimate

+ [ AullL, ey < ClflL, i) (3.6)

a 5< Ly (GE)

ILaul|p gy < M Huuwﬁ E(A)E )"‘h H“HL (GE)* 3.7)

Let O, denote the operator generated by the problem (3.2) and
noo1 1
Liu = ZsiAk X I u
k=1

By using the estimate (3.7) we obtain that there is a 6 € (0,1) such that

HL1(08+A)*1HB(X) <

Hence, from perturbation theory of linear operators we obtain the assertion. O
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4 Abstract Cauchy problem for degenerate parabolic equation with
parameter

Consider the initial and BVP for degenerate parabolic equation with parameter:

u v 9Plu A d t te(0,T G 41
5+ L e 5 H ARt du=f(5h),  1€OT),xEC @)

8 o il © g il
Y e dyiux, (Gro, 1) = 0, & Britty (G, t) =0,
i —

i i

u(x,00=0, te(0,T), x¥ eg, (4.2)

where u = u(x,t) is a solution, dy;, Bx; are complex numbers, ¢ are positive parameters, a; are
complex-valued functions on G, A(x) is a linear operator in a Banach space E, domains G, Gy,
Gro, G, 0ix and x(0) are defined in Section 2 and

(i i
o _ X"k (by, — xk)"‘”‘i u(x,t), d>0.

i
axk

For p =(po,p), P =(p1,p2,---,Pn), Gr = (0,T) X G, Ly a(Gr; E) will denote the space of
all E-valued weighted p-summable functions with mixed norm.

Theorem 4.1. Suppose the Condition 3.2 holds for ¢ > 7. Then, for f € Lp(Gr; E) and suffi-
ciently large d > 0 problem (4.1)—(4.2) has a unique solution belonging to Wr-l,:[[f] (Gr; E(A), E) and the
following coercive estimate holds

Proof. The problem (4.1) can be expressed as the following abstract Cauchy problem

ou

ol2ly
ot dx>

+ HAuHLp(GT;E) < CHfHLp(GT;E)'
LP(GT;E)

2
+ Z Ex
k=1

Lp(GriE)

W Octdu(t) = (1), u(0)=0. (43)

From Theorems 2.4, 3.3 we get that O, is R-sectorial in F = L,(G;E). By [18, §1.14], O is a
generator of an analytic semigroup in F. Then by virtue of [28, Theorem 4.2], problem (4.3)
has a unique solution u € W;O (0,T; D(O¢), F) for f € Ly (0, T; F) and sufficiently large d > 0.
Moreover, the following uniform estimate holds

Since Ly, (Gr; F) = Lp(Gr; E), by Theorem 3.3 we have

du

’m + Hos“HL,,O(o,T;F) < CHfHLpO(O,T;F)'

Ly, (0,T;F)

[(Oe + d)uHLVO((O,T);F) = D(O,).

Hence, the assertion follows from the above estimate. O
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5 Degenerate parabolic DOE on the moving domain

Consider the degenerate problem (4.1)—(4.2) on the moving domain G(s) = [T;_;(0, bx(s)):

0 L o2l
a—u +) ak(xk)—g +A(xX)u+du = f(x,t), (5.1)
t g ox;
Vsl Y gyl
Lau =Y _ e 6iux, (Gro(s), 1) =0, Liou =Y _ € By (G (s),t) =0,
i=0 i=0
u(x,0) =0, te€(0,T), x¢€G(s), (5.2)

where the end points by (s) depend of a parameter s, x; € (0, b (s)) and bi(s) are positive con-
tinues function, Gyo(s), Gy (s) are domains defined in Section 2, replacing (0, by) by (0, bi(s))

and
i 1
Uik = 5 +

— Kop = MINnq &g, Ao |,
2" 2p(1 — aor) ok dzk}

olly . Rk
1k _ Xk
o XM (b — x) oxe u(x,t).

Let
GT = GT(S) = (0, T) X G(S)

Theorem 4.1 implies the following.

Proposition 5.1. Assume the Condition 3.2 hold for ¢ > 7. Then, problem (5.1)~(5.2) has a unique
solution u € W%:LZ}((G(S));E(A),E) for f € Ly(Gr(s); E) and sufficiently d > 0. Moreover, the
following coercive uniform estimate holds

Proof. Under the substitution 1, = xxbi(s) the problem (5.1)—(5.2) reduced to the following
BVP in fixed domain G:

ou

o2y
ot ox?

+ [Aull ey < ClAllL, ) (5.3)
Lp(GriE)

2
+ Z Ek
k=1

Ls(Gr;E)

Ju N ol2ly -
e + ) b3 (8)ak(t) = + A(T)u = f(1,t), te Ry, TeG. (5.4)
t o T
M1 . (i Mg o (i
Z bk’k(s)ékiuxk(Gko, t) =0, 2 bklk (s)ﬁkiuk <Gkb/ t) =0,
i=0 i=0
u(x,00=0, te(0,T), xeG=]](0b), (5.5)

k=1
where
i(7) = a(x(7)),  A(T) = A((x(1)),  f(r) = f((x(7))),
x(7) = (x1(71), x2(12), . .., Xn(T0))-

The problem (5.4)—(5.5), is a particular case of (4.1)-(4.2). So, by virtue of Theorem 4.1 we
obtain the required assertion. O
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6 Nonlinear degenerate abstract parabolic problem

In this section, we consider initial and BVP for the following nonlinear degenerate parabolic
equation

ou & o2y
o g 1] — (1]
5 —|—]§1ak(xk) ax,% —|—B<<t,x,u,D u))u F(t,x,u,D u), (6.1)
Vsl Vg ol
Y Gtz (Gro,t) =0, Y Briny (Grs t) = 0,
i=0 i=0
u(x,00=0, te(0,T), xeG, xMeg, (6.2)

where u = u(x, t) is a solution, &y, Bx; are complex numbers, a; are complex-valued functions
on G; domains G, G, Gyo, Giy and oy, x®) are defined in Section 2 and
ollu [ 4 a1

D][ﬂu =— = |5/ (bk— xk)“kT u(x,t), 0<a <L

1
Bxk

Let Gr = (0,T) x G, where G = [T;_;(0, bx). Moreover, let

n

bk S (O/ bOk)/ GO = H(O/ bOk)/T S (0/ TO)/
k=1

Byi = (W*?(Gy, E(A), E), LY (G; E))

Tik:P”
1
my; + SA—a] n 1
Nik = #, Bo = [ ]] B
k=1i=0
Remark 6.1. By virtue of [27, § 1.8.] and the Remark 3.1, operators u — aa[ifu |xk , are con-
e

tinuous from Wﬁ(G,’ E(A),E) onto By; and there are the constants C; and Cj such that for
w e WA(GE(A),E), W = {wy}, wy = 2%, i=0,1,k=1,2,...,n

oxi
olilw olilw
o —sup| 22 < cifwl, ,
L L W;,i(G;E(A)E)
H axk Buco  ¥SC axk By ’

IW]lo o = igggﬂwkfugki < Coll@llyp Gipa)e)

Condition 6.2. Suppose the following hold:
(1) Eisan UMD space and 0 < wq, ap < 1 — %, p € (1,00);
(2) ay are continuous functions on G, ax(x) < 0, for all x € G, Sy, # 0, Piomy, #0,k=1,2,...,1;

(3) there exist ®y; € By, such that the operator B(t,x, ®) for & = {PDy;} € By is R-sectorial in E
uniformly with respect to x € Go and t € [0, Ty|; moreover,

B(t,x,®)B}(°,x°,®) € C(G;L(E)), t°€(0,T), x°€G;
(4) A = B(t%,x%,®): Gr x By — L(E(A),E) is continuous. Moreover, for each positive r there

is a positive constant L(r) such that ||[B(t,x,U) — B(t,x,U)]v||y < L(r)||[U — U||3 || Av]|g for
t e (0, T), x € G, U,U € B(),U = {I/_lki}, ily; € By, ||U||BO, HUHBO <rve D(A),
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(5) the function F : Gt x By — E such that F(-,U) is measurable for each U € By and F(t,x,-) is
continuous for a.a. t € (0,T), x € G. Moreover, ||F(t,x,U) — F(t,x,U)|p < ¥,(x)[[U — Ul
foraa.t € (0,T), x € G, U,U € By and 1U|lp,, HUHBO <r f(-) =F(-,0) € Ly(Gr; E).

The main result of this section is the following.

Theorem 6.3. Let the Condition 6.2 be satisfied. Then thereis T € (0, Ty) and by € (0, box) such that
problem (6.1)—(6.2) has a unique solution belonging to W;/’E] (Gr;E(A),E).
Proof. Consider the following linear problem

n 2]

d d
Y o) S +du=f(x,t), x€G, te(0,T),
o = ox;
Vol Y gl
Y Siwy (Gro, t) =0, Y Briwy (G t) =0, (6.3)
i=0 i—0
w(x,0)=0, te(0,T), xeG, M eG, d>o. O

By Theorem 4.1 and in view of Proposition 5.1 there exists a unique solution w &
W;/’Lz](GT;E (A),E) of the problem (6.3) for f € L,(Gr;E) and sufficiently large d > 0 and
it satisfies the following coercive estimate

HwHW}l,,’LZ](GT;E(A),E) < COHf”Lp(GT;E)’

uniformly with respect to b € (0, b}, i.e., the constant Cy does not depends on f € L,(Gr; E)
and b € (0 byg] where

A(x) = B(x,0), f(x)=F(x,0), xe€(0,b).

We want to solve the problem (6.1)—(6.2) locally by means of maximal regularity of the linear
problem (6.3) via the contraction mapping theorem. For this purpose, let w be a solution of
the linear BVP (6.3). Consider a ball

B,={veY,v—weY,|v—-w|, <r}

For given v € B, consider the following linearized problem

ou & oy

= + Y a(xk) = + A(x) = F(x,V) 4 [B(x,0) — B(x, V)]v,

ot = ox;
Vol Y gl
Y Siwy (Gro, t) =0, Y Briwy (G t) =0, (6.4)
i=0 i=0

w(x,0)=0, te(0,T), xe€gG, x®) ¢ Gy.

where V = {vy}, vy, € By,. Define a map Q on B, by Qu = u, where u is solution of (6.4).
We want to show that Q(B,) C B, and that Q is a contraction operator provided T and by are
sufficiently small, and r is chosen properly. In view of separability properties of the problem
(6.3) we have

1Qu—wlly = [l — wlly < Cof IF(x, V) — F(x,0) | + [BO, W) — B(x, V)]v]l}.
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By assumption (4) of condition 6.2 we have
I[B(O, W)v — B(x, V)]

< st[lpb]{uww,m — B(x, W) [0l + B W) = B V)l 0] |
x€l0,

< [5(b) + L(R)[|W — VIIOO,EJ [lv=wlly + [[wlly]
< 4(b) + L(R)[Crllv = wlly + [[v = w|[y][[lv — wl[y + [[wlly]
< 8(b) + L(R)[Car +r][r + [[w]ly],

where

6(b) = sup |[[B(0, W) — B(x, W)]l|p g, -
x€[0,b]

By assumption (5) of condition 6.2 we get
IF(x, V) = F(x,0,) [ < 6(b) +[|[F(x, V) — F(x, W)l + [[F(x, W) — F(x,0) |
< 6(b) + prll[o —wlly +[lwlly],
prCi[[[v —wlly +[lwlly] < pr[Cir +{lwlly],
where R = Cyr + ||w||y is a fixed number. In view of above estimates, by suitable choice of
g, Lr and for sufficiently small T € (0, Ty) and by € (0, boi] we have
1Qv —wlly <7,
ie.
Q(B,) C B,.

Moreover, in a similar way we obtain

1Qv — Qolly
< Co{prCi + Ma + L(R)[[|v — wlly + Car] + LR)Ca[r + [|w][][Jo — o[y } + (D).
By suitable choice of yg, Lr and for sufficiently small T € (0, Ty) and b € (0, bpx) we obtain

|Qu—Q70|ly < #l|lv—"70]|y, 7 <1,ie Q is a contraction operator. Eventually, the contraction

mapping principle implies a unique fixed point of Q in B, which is the unique strong solution

u € Wyl2(Gr; E(A), E).

7 Cauchy problem for nonlinear system of degenerate parabolic
equations

Consider the initial and BVP for the system of nonlinear parabolic equations

Oy, n a[Z]um N n N a[l}uj
j = Z ak(X)aiz -+ Z dm]‘(X)u]‘(x, t) + 2 Z b]q(X)T + Fm (x/ t/ l/l), (71)
k=1 Yoo i3 k=1j=1 Xk
© o i © o ol
Y 66Dy um (Gro t) =0, Y BkiDy tim (Gyp, t) = 0,
i=0 i=0

un(x,00=0, x€G, te(0,T), m=12,...,N, NeN, (7.2)
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where u = (uy,uy,...,un), myj € {0,1}, ki, Bxi are complex numbers, a; are complex valued
functions,

, (1] i
D;EI]“ _ du 0

14 14
- ax;,{ = |2 (bx — xx) kaTck u(x,t), 0<uw <1,
n
x=(x1,x2,...,%:) € G=T](0 b), myj € {0,1},
k=1
Gro = (x1,%2, -+, Xk—1,0, X1, - -, Xn), g€ (1,00),

Gkb = (xll X2, ... lxkfllbkl Xk+1s- -+ /xn)/'
and

Mii + 5 .
Gki - lfp(lm’ Ski = S(l - eki)/ 5> 0/ Bki = ls}ar i= 0/ 1/

BO = HBkl/ [kakl 7& 0/ ,Bkmkz # O/ k = 1/ 2/ .- '/n'
ki

Let A be the operator in [;(N) defined by
D(A) =14(N), A= [dyi(x)], dwj(x) =gm(x)2¥, m,j=12,...,N,

where

1
N q
ly(N) = { = (w1}, i =12, Nl = (Z!uw) < oo},

1
N T q
lq(A) = {u S lq(N), ||quq(A) = ||AM||]q(N) = (Z 2]1/[]“ > < OO},
=1

xe€G, 1<g<o, N=12,...,0c0.
Let byj(x) = Myj(x)2% and
B = L(L,(G:1,(N))).
From Theorem 6.3 we obtain the following result.
Theorem 7.1. Let the following conditions hold:

(1) ay are continuous functions on G and ax(x) < 0;

(2) s > 2';652:1?),0 <0 < sy, S0 = 5(;37;1)/ and

(3) gi € C(G), Nij € C(G); dii(x) > 0 and eigenvalues of the matrix [d,,;(x)] are positive for all
x € G,m,i=1,2,...,N; there is a positive constant C such that

n N . :
2 MZ;(X)SCZgyl(X)<OO, xe€G, —+—=1;

k=1j=1 j=1 9 nm
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(4) the function F(-,v) = (Fi(-,v),...,Fn(-,v)) is measurable for each v € Bo, and the function
F(x,-) for a.a. x € G is continuous and f(-) = F(.,0) € L,(G;l,); for each R > 0 there is a
function ¥Yr € Loo(G) such that

IF(x, U) = F(x, U)||;, < ¥r()IU = U], (4)
aa.x € Gand

u,ue BOp/ ||u||BOp <R, ||u||BOp <R, U= {uk]-}, = {L_lkj}, uk]-,ﬁkj € BOp-

Then there is T € (0,Tp) and by € (0,bg) such that problem (7.1)-(7.2) has a unique
solution u = {um(x)}i\l that belongs to space W,},’Z(GT, 1,(A),1y).

Proof. By virtue of [26], the I;(N) is a UMD space. It is easy to see that the operator A
is R-positive in [,(N). Then by using the conditions (1)~(3) we get that the condition (5) of
Theorem 6.3 is hold. So in view of the Theorem 6.3 we obtain the assertion. ]

Acknowledgements

We would like to thank Assoc. Prof. Burak Kelleci for his help on the style of this paper.

References

[1] R. AGARwAL R, D. O" REGAN, V. B. SHAKHMUROV, Separable anisotropic differential opera-
tors in weighted abstract spaces and applications, J. Math. Anal. Appl. 338(2008), 970-983.
MR2386473; url

[2] S. AemoN, On the eigenfunctions and on the eigenvalues of general elliptic boundary
value problems, Comm. Pure Appl. Math. 15(1962), 119-147. MR0147774; url

[3] H. AMANN, Linear and quasilinear parabolic problems. Vol. 1. Abstract linear theory, Mono-
graphs in Mathematics, Vol. 89, Birkhduser Verlag, Basel, 1995. MR1345385; url

[4] A. AsnayraLYEV, C. Cugvas, S. Piskarev, On well-posedness of difference schemes
for abstract elliptic problems in L, spaces, Numer. Func. Anal. Optim. 29(2008), 43-65.
MR2387837; url

[5] O. V. Besov, V. P. ILIN, S. M. NIkoLsK11, Integral representations of functions and embedding
theorems, Halsted Press, New York—-Toronto-London, 1978. MR0519341

[6] D. L. BURKHOLDER, A geometrical characterization of Banach spaces in which martingale
difference sequences are unconditional, Ann. Probab. 9(1981), No. 6, 997-1011. MR632972;
url

[7] R. DENK, M. HIEBER, ]. Priiss ], R-boundedness, Fourier multipliers and problems of
elliptic and parabolic type, Mem. Amer. Math. Soc. 166(2003), No. 788. MR2006641

[8] C. DoRE, S. YAKUBOV S, Semigroup estimates and non coercive boundary value problems,
Semigroup Forum 60(2000), 93-121. MR1829933; url


http://www.ams.org/mathscinet-getitem?mr=2386473
http://dx.doi.org/10.1016/j.jmaa.2007.05.078
http://www.ams.org/mathscinet-getitem?mr=0147774
http://dx.doi.org/10.1002/cpa.3160150203
http://www.ams.org/mathscinet-getitem?mr=1345385
http://dx.doi.org/10.1007/978-3-0348-9221-6
http://www.ams.org/mathscinet-getitem?mr=2387837
http://dx.doi.org/10.1080/01630560701872698
http://www.ams.org/mathscinet-getitem?mr=0519341
http://www.ams.org/mathscinet-getitem?mr=632972
http://dx.doi.org/10.1214/aop/1176994270
http://www.ams.org/mathscinet-getitem?mr=2006641
http://www.ams.org/mathscinet-getitem?mr=1829933
http://dx.doi.org/10.1007/PL00020982

Degenerate parabolic equations 15

[9] A. Faving, V. B. SHAKHMUROV, YA. YAKUBOV, Regular boundary value problems for com-
plete second order elliptic differential-operator equations in UMD Banach spaces, Semi-
group Form 79(2009), 22-54. MR2534222; url

[10] A. Faving, A. Yacl, Degenerate differential equations in Banach spaces, Monographs and Text-
books in Pure and Applied Mathematics, Vol. 215, Marcel Dekker, Inc., New York, 1999.
MR1654663

[11] W. E. FrrzciBBON, M. LANGLATS, ]. ]. MORGAN, A degenerate reaction-diffusion system
modeling atmospheric dispersion of pollutants, . Math. Anal. Appl. 307(2005), 415-432.
MR2142434; url

[12] J. A. GOLDSTEIN, Semigroups of linear operators and applications, Oxford Mathematical
Monographs, The Clarendon Press, Oxford University Press, New York, 1985. MR790497

[13] P. Gumportr, Optimal regularity for a class of singular abstract parabolic equations, . Dif-
ferential Equations 232(2007), 468-486. MR2286388; url

[14] S. G. KRrEIN, Linear differential equations in Banach space, Translations of Mathematical
Monographs, Vol. 29, American Mathematical Society, Providence, R.I., 1971. MR0342804

[15] J-L. Lions, E. MAGENES, Non-homogenous boundary value problems, Mir, Moscow, 1971.
MR0350176; url

[16] A. LunaRrD1, Analytic semigroups and optimal reqularity in parabolic problems, Progress in
Nonlinear Differential Equations and their Applications, Vol. 16, Birkhaduser, Basel, 1995.
MR13295478; url

[17] J. PrUss, G. SiMONETT, Maximal regularity for evolution equations in weighted L,-spaces,
Arch. Math. 82(2004), 415-431. MR2061448; url

[18] M. A. Racusa, Embeddings for Morrey—Lorentz spaces, J. Optim. Theory Appl. 154(2012),
491-499. MR2945230; url

[19] V. B. Smakamurov, Coercive boundary value problems for regular degenerate
differential-operator equations, |. Math. Anal. Appl. 292(2004), 605-620. MR2048274; url

[20] V. B. SmaAkaMUROV, Nonlinear abstract boundary value problems in vector-valued func-
tion spaces and applications, Nonlinear Anal. 67(2006), 745-762 MR2319206; url

[21] V. B. SHAkHMUROV, Degenerate differential operators with parameters, Abstr. Appl. Anal.
2007, Art. ID 51410, 27 pp. MR2320795; url

[22] V. B. SHAKHMUROV, Regular degenerate separable differential operators and applications,
Potential Anal. 35(2011), 201-212. MR2320795; url

[23] V. B. SHakaMUROV, Nonlocal Navier-Stokes problem with small parameter, Bound. Value
Probl. 2013, 2013:107, 19 pp. MR3066045; url

[24] V. B. SmakamuRrov, Nonlocal problems for Boussinesq equations, Nonlinear Anal.
142(2016) 134-151 MR3508061; url


http://www.ams.org/mathscinet-getitem?mr=2534222
http://dx.doi.org/10.1007/s00233-009-9138-0
http://www.ams.org/mathscinet-getitem?mr=1654663
http://www.ams.org/mathscinet-getitem?mr=2142434
http://dx.doi.org/10.1016/j.jmaa.2005.02.060
http://www.ams.org/mathscinet-getitem?mr=790497
http://www.ams.org/mathscinet-getitem?mr=2286388
http://dx.doi.org/10.1016/j.jde.2006.09.017
http://www.ams.org/mathscinet-getitem?mr=0342804
http://www.ams.org/mathscinet-getitem?mr=0350176
http://dx.doi.org/10.1007/978-3-642-65161-8
http://www.ams.org/mathscinet-getitem?mr=13295478
http://dx.doi.org/10.1007/978-3-0348-9234-6
http://www.ams.org/mathscinet-getitem?mr=2061448
http://dx.doi.org/10.1007/s00013-004-0585-2
http://www.ams.org/mathscinet-getitem?mr=2945230
http://dx.doi.org/10.1007/s10957-012-0012-y
http://www.ams.org/mathscinet-getitem?mr=2048274
http://dx.doi.org/10.1016/j.jmaa.2003.12.032
http://www.ams.org/mathscinet-getitem?mr=2319206
http://dx.doi.org/10.1016/j.na.2006.06.027
http://www.ams.org/mathscinet-getitem?mr=2320795
http://dx.doi.org/10.1155/2007/51410
http://www.ams.org/mathscinet-getitem?mr=2320795
http://dx.doi.org/10.1155/2007/51410
http://www.ams.org/mathscinet-getitem?mr=3066045
http://dx.doi.org/10.1186/1687-2770-2013-107
http://www.ams.org/mathscinet-getitem?mr=3508061
http://dx.doi.org/10.1016/j.na.2016.04.014

16 V. B. Shakhmurov and A. Sahmurova

[25] V. B. SHAKHMUROV, A. SHAHMUROVA, Nonlinear abstract boundary value problems at-
mospheric dispersion of pollutants, Nonlinear Anal. Real World Appl. 11(2010), 932-951.
MR2571266; url

[26] P. E. SosoLEvskil, Coerciveness inequalities for abstract parabolic equations, Doklady
Akademii Nauk SSSR 57(1964), 27-40. MR0166487; url

[27] H. TriEBEL, Interpolation theory, function spaces, differential operators, North-Holland Math-
ematical Library, Vol. 18, North-Holland, Amsterdam, 1978. MR503903

[28] L. WErs, Operator-valued Fourier multiplier theorems and maximal L, regularity, Math.
Ann. 319(2001), 735-758 MR1825406; url

[29] S. YakuBov, YA. YakuBov, Differential-operator equations. Ordinary and partial differential
equations, Chapman and Hall/CRC, Boca Raton, 2000. MR1739280


http://www.ams.org/mathscinet-getitem?mr=2571266
http://dx.doi.org/10.1016/j.nonrwa.2009.01.037
http://www.ams.org/mathscinet-getitem?mr=0166487
http://dx.doi.org/14536-33143
http://www.ams.org/mathscinet-getitem?mr=503903
http://www.ams.org/mathscinet-getitem?mr=1825406
http://dx.doi.org/10.1007/PL00004457
http://www.ams.org/mathscinet-getitem?mr=1739280

