
Acta Cybernetica 23 (2017) 537–559.

Automatic Calculation of Process Metrics and their

Bug Prediction Capabilities

Péter Gyimesia

Abstract

Identifying fault-prone code parts is useful for the developers to help re-
duce the time required for locating bugs. It is usually done by characterizing
the already known bugs with certain kinds of metrics and building a predic-
tive model from the data. For the characterization of bugs, software product
and process metrics are the most popular ones. The calculation of product
metrics is supported by many free and commercial software products. How-
ever, tools that are capable of computing process metrics are quite rare. In
this study, we present a method of computing software process metrics in
a graph database. We describe the schema of the database created and we
present a way to readily get the process metrics from it. With this technique,
process metrics can be calculated at the file, class and method levels. We used
GitHub as the source of the change history and we selected 5 open-source Java
projects for processing. To retrieve positional information about the classes
and methods, we used SourceMeter, a static source code analyzer tool. We
used Neo4j as the graph database engine, and its query language - cypher -
to get the process metrics. We published the tools we created as open-source
projects on GitHub.

To demonstrate the utility of our tools, we selected 25 release versions of
the 5 Java projects and calculated the process metrics for all of the source code
elements (files, classes and methods) in these versions. Using our previous
published bug database, we built bug databases for the selected projects that
contain the computed process metrics and the corresponding bug numbers
for files and classes. (We published these databases as an online appendix.)
Then we applied 13 machine learning algorithms on the database we created
to find out if it is feasible for bug prediction purposes. We achieved F-measure
values on average of around 0.7 at the class level, and slightly better values
of between 0.7 and 0.75 at the file level. The best performing algorithm was
the RandomForest method for both cases.

Keywords: process metrics, graph database, bug prediction

aDepartment of Software Engineering, University of Szeged, Hungary,
E-mail: pgyimesi@inf.u-szeged.hu

DOI: 10.14232/actacyb.23.2.2017.7



538 Péter Gyimesi

1 Introduction

Nowadays, companies tend to spend a large amount of resources on debugging and
fixing software faults. Predicting these bugs can greatly help to reduce the costs.
For this reason, bug prediction has become a popular research area. Recognizing
bug-prone source code parts requires that one characterize them in some way.

There are many good studies on bug characterization [6, 22, 3, 4]. It can be
carried out with classic product metrics, with software process metrics or with some
metrics of a different nature like textual similarity. Product metrics are extracted
from the structure of the source code. Some examples are lines of code, cyclomatic
complexity and number of methods. There are many tools – some of them are free
– which can produce these metrics for projects of different programming languages.
These metrics are frequently used for bug characterization [19], because it is easy
to compute them. Product metrics depend on a single state of the software and
no project history is required; thus no temporal characteristics are used. These
metrics are usually computed for files or classes, but an increasing number of tools
support methods too.

Software process metrics are computed from developer activities. Most of them
include some kind of temporal information. The most common ones are based on
the number of previous modifications, number of different contributors, number of
modified lines and the time of the modifications. These metrics can of course be
used for a variety of purposes. Since the computation is based on the developers’
activities, these values are perfect for examining the developers’ behavior. Further-
more, locating key source code parts that are modified often or recently is another
possible utilization of these metrics.

Previous studies [20, 16, 10, 11] have shown that while software process metrics
are generally better bug predictors than product metrics, tools that can compute
these metrics are still quite rare. The studies focus mainly on the definition of
process metrics and the results. The method of computing these metrics is not
always described, so reproducing these results may be a challenging task. It may
be due to the difficulties of storing and processing the historical information. An
important criterion here is to have available project history. Versioning systems
(like Git or Subversion) are commonly used in software development, thus the
history of a project is quite often accessible through an API. Source code hosting
services like GitHub or Bitbucket are becoming evermore popular and contain open-
source projects of various programming languages. Another criterion is that the
developers have to use this system correctly, otherwise this information is not useful
and it may be misleading.

The first problem we run into is the size of this data set. A project may contain
hundreds of thousands lines of source code and also thousands or tens of thousands
of commits. To compute the process metrics for one software version, the whole
history has to be processed, hence an efficient method is required for this task.

Another aspect of this problem is the granularity of process metrics. Calcula-
tions can be made at different levels: file, class or method. At the file level, it is
fairly simple, because versioning systems work with files, so no additional analysis



Calculation of Process Metrics and their Bug Prediction Capabilities 539

is needed. However, at the class level and the method level, a thorough source
code analysis is required to extract the source code elements and their position.
For more accurate results, other information (empty lines, comments, etc.) may be
gathered. This task can be carried out with a static source code analysis tool1.

The next issue is how to store the gathered data in an easily accessible form.
In the past few years, the popularity of graph databases has increased due to the
improving technologies behind them. A graph database can handle a large amount
of data and it is suitable for storing weakly structured data. The historical data
of a software package can be represented as a graph, so studies [2] have started
to examine the application of these graph databases to assess software quality,
especially in the calculation of software process metrics, hence graph databases
seem to be a good choice for this task.

We chose GitHub as a data source because it contains more than 38 million
repositories2 and has a readily usable API3 to access these projects. Furthermore,
these repositories are accessible via Git4. We chose SourceMeter5 as a source code
analysis tool, because it is capable of processing five programming languages (Java,
C++, C#, Python, RPG) and it can extract detailed information about the source
code elements, including methods. The results of this analysis is of course a graph.
It contains the source code elements (files, classes, methods) as nodes and the
corresponding relationships between these elements as edges. Also, it has a Java
API for the graph. These features make it an ideal choice for this task. Due to the
amount and structure of data we are dealing with, we decided to use Neo4j6 for
data storage. It is currently the most popular open-source graph database. It also
has a powerful query language called cypher that can be utilized for computing
process metrics.

Our motivation is to provide a way of computing software process metrics
quickly and easily. The main contributions of this study are the following:

• A method for automatically calculating process metrics in a graph database
for files, classes and methods;

• An open-source implementation of the presented method;

• Assessment of the bug prediction capabilities of the calculated process met-
rics; and

• A publicly available bug database with process metrics.

The remainder of the paper is organized as follows. Section 2 presents some
related work and Section 2.1 summarizes the process metrics used in other studies.
In Section 3, we present the database schema that we designed, the steps of its

1https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
2https://github.com/about
3https://developer.github.com/v3/
4https://git-scm.com/
5https://www.sourcemeter.com/
6https://neo4j.com/



540 Péter Gyimesi

construction and the calculation of process metrics in this database. Section 4 lists
the processed software systems with some statistics concerning them. In Section 5,
we present the results of machine learning algorithms applied to this database.
Lastly, in Section 6 we draw some pertinent conclusions and suggest some plans for
future study.

2 Related Work

Bug prediction is an intensively studied research area [12, 14, 11] and there are
publicly available databases that can be used for bug prediction purposes. The
biggest of these datasets is the tera-PROMISE [13] repository. It is up-to-date
and it is regularly maintained. It contains, among other things, bug databases
with various metrics, like rule violations, object-oriented metrics and complexity
metrics. Actually, some studies utilize this dataset, but there are many researchers
who build their own databases and never publish them.

D’Ambros et al. [4] made an extensive study on bug prediction. They compared
the well-known bug prediction approaches. As part of their research, they created
a benchmark database from several open-source projects (Eclipse, Mylyn, Lucene).
This database contains bug numbers at the class level with 15 change metrics
and 17 product metrics. The bug information was extracted from the commit
messages and bug tracking systems by using pattern matching, as others did in
earlier studies [24, 5]. They describe the whole process of building such a database,
but the links to the tools used do not work anymore. They computed change metrics
and bug information for files due to the file-based version control systems. In the
case of Java inner classes, the same information was linked to multiple classes. Since
they did not have a solution to this problem, they filtered these inner classes from
the process. They found that the Weighted Churn and Linearly Decayed Entropy
metrics perform the best (around 90%) for bug prediction, but the computation of
these metrics is quite complex. Furthermore, they concluded that multiple metrics
should be used for this purpose in order to achieve good results across multiple
systems.

The Eclipse project is used quite often for studies on bug prediction. Bernstein
et al. [1] used this project to examine whether temporal features are suitable for bug
prediction. They gathered change information from CVS and bugs from Bugzilla
and they computed several temporal features. They built non-linear models for
the bug database they created and they achieved a high accuracy score (99%) on
predicting defects. They concluded that temporal features (process metrics) and
non-linear models are suitable for bug prediction. Moser et al. [15] also used the
Eclipse project to investigate the characteristics of change metrics in bug prediction.
They calculated 18 change metrics at the file level. They achieved better results
with these metrics than with product metrics [16] and they showed that 3 out of
18 change metrics can achieve good results, and they are as stable as the model
with all the metrics. These three metrics are the following: number of revisions,
number of bug fixes, maximum size of all of its change sets.



Calculation of Process Metrics and their Bug Prediction Capabilities 541

Shihab et al. [22] also examined whether the number of the predictors can be
reduced. As a data source, they used the Eclipse data set [24]. They showed
that the 34 product and process metrics can effectively be reduced to 4 with very
little difference in the overall prediction accuracy. They found that the most stable
independent metrics were: total prior changes, number of pre-release defects and
TLOC.

The study made by Krishnan et al. [10] sought to answer the research question
of whether the process metrics are good bug predictors for the family of products in
the evolving Eclipse product line. They replicated the results previously achieved by
Moser et al. [16] and extended them with their observations. They concluded that
process metrics are good bug predictors for the Eclipse product line. Furthermore,
they found that a small subset of these metrics are stable and consistent across
multiple projects. They are called maximum changeset, number of revisions and
number of authors.

Graves et al. [6] also made a study on the bug prediction capabilities of process
metrics. They computed the metrics at the module level and analyzed systems
written in C. Their observation was that the best model used the weighted time
damp metric and the best linear models used number of changes and age met-
rics. They found that the number of developers and the changeset metrics did not
influence the accuracy of the fault prediction.

In an earlier paper [7], we presented a method for characterizing software bugs
with product metrics. In this method, we include temporal information by building
the bug database from the buggy source code elements before and after the fix, but
of course more sophisticated temporal characteristics should be included.

Studies have shown that process metrics usually perform better in bug predic-
tion than product metrics do. Rahman et al. [20] analyzed the properties of process
metrics from the perspective of performance, stability, portability and stasis. They
found that product metrics have a higher stasis - which means they do not change
much compared to the process metrics -, thus the same elements were predicted
as defective over and over. Also, product metrics are less stable and less portable
across projects.

Hassan [8] went further. In his paper, he proposed complexity metrics that
are based on process metrics. He analyzed 6 projects written in C and C++ and
computed process metrics at the file level, but he did not give a detailed description
of the method of processing and how to compute these metrics. He concluded that
the proposed change complexity metrics are better fault predictors than the well-
known process metrics. He also said that we should consider using these metrics
instead of the simple metrics like number of prior modifications and number of
prior faults.

Buginfo7 is a tool that is used for collecting bug information from source code
repositories [9]. It uses regular expressions on the commit messages to count the
number of bugs in classes, as other studies did [24, 5]. It is also capable of computing
process metrics, but unfortunately the tool is not maintained.

7https://kenai.com/projects/buginfo



542 Péter Gyimesi

In this study, we present a method to automatically compute the process metrics
for GitHub projects. We use Neo4j, a graph database engine to store the informa-
tion collected, and we utilize the cypher query language to readily compute these
metrics. None of the previous studies used GitHub as a data source. Also, none of
them defined a graph schema for the data they collected nor did they use a graph
database. Furthermore, there are no studies to date that calculate software process
metrics at the method level.

2.1 Process Metrics

In the literature, there are many software process-related metrics [17, 18, 8, 1]
and they were mainly used in studies concerning bug prediction. In these studies,
the authors evaluated the predictive capability of these metrics and they often
compared this capability with that of product metrics [16]. They found that the
age of a file and the size of the change metrics are usually better predictors than
the others [15, 10]. In this study, we did not rank these metrics in any way. Here,
we enumerate the definitions of the most common metrics:

• Number of Modifications: The number of previous modifications of the
source element.

• Number of Bug Fixes: The number of previous modifications of the source
element that reflect an intention to fix a bug.

• Number of Versions: The number of software versions (revisions) since
the source element is created. In other words, the number of commits on the
whole project since the creation of the element.

• Number of Re-factorings: The number of previous modifications of the
source element that were committed in order to perform re-factoring.

• Age: The age of the source element in days, weeks or months.

• Weighted Age: The weighted age is calculated using the age and size of the
previous modifications. [16] It may be expressed in days, weeks, or months.
The formal definition is the following:

WeightedAge(e) =

∑
v Age(v) ×NumberOfAddedLines(e, v)∑

v NumberOfAddedLines(e, v)
(1)

In this formula, we would like to compute the metric for the source element
e. The Age is the age of the software version v (days, weeks, or months),
where v is earlier than the version for which we want to calculate. The
NumberOfAddedLines represents the number of lines added for source element
e in version v.

• Number of Contributors: How many different developers contributed to
the source element.



Calculation of Process Metrics and their Bug Prediction Capabilities 543

• Number of Contributor Changes: The number of developer changes in
the code history. A developer change occurs when the next sequential modi-
fication on the same source element was performed by a different developer.

• Sum of Added Lines: The total sum of the lines of code added to the
source element.

• Maximum Number of Added Lines: The maximum number of lines of
code added with one commit to the source element.

• Average Number of Added Lines: The average number of lines of code
added to the source element.

• Number of Additions: The number of previous commits in which new lines
were added to the source element.

• Sum of Deleted Lines: The total sum of the lines of code deleted from the
source element.

• Maximum Number of Deleted Lines: The maximum number of lines of
code deleted with one commit from the source element.

• Average Number of Deleted Lines: The average number of lines of code
deleted from the source element.

• Number of Deletions: The number of previous commits containing lines
that were deleted from the source element.

• Code Churn: The sum of lines added minus lines deleted from the source
element [17].

• Relative Code Churn: The normalized Code Churn metric. Normalization
can be achieved with, for example, lines of code, file count or time period [18].

• Maximum Number of Elements Modified Together: The maximum
number of distinct elements that were modified with one commit.

• Average Number of Elements Modified Together: The average number
of distinct elements that were modified together with the source element.

• Average Time Between Changes: The average number of days, weeks or
months that passed between consecutive modifications of the source element.

• Author: The identity of the original author of the source element. It may
include other information about the developer, such as the total number of
commits of the author and number of projects.

• Number of Referenced Issues: The number of distinct issues referenced
in the comments of commits that contain modifications of the source element.



544 Péter Gyimesi

• Number of Commits Without Message: The number of previous mod-
ifications without any comment message.

Most of these metrics are based on the versioning information and the issue
tracking data, but there are others, for instance, that include software management
data. We did not process such data source so we will not describe them here.
Furthermore, more specific characteristics may be taken into account like Number
Of Referenced High Priority Issues if issue priority is available. Since these details
may vary from system to system, we omitted these variations from the study and
we concentrated on the most common ones.

Other metrics can be formed like Change Activity Rate [21], which is defined
as the overall number of modifications relative to the age of the source element in
months. This metric can be computed by a simple division. The calculation of
these combined metrics is straightforward, so we will not discuss them.

Most of the metrics listed above are computed for a given version (revision),
except the fixed characteristic like Author. In the literature, these metrics are
defined for files or modules (collection of files). We defined them for source elements
which may be a file, class or even a method. Furthermore, a time period can be
specified for most of these metrics. For example, we can limit the interval of the
calculation for the last six months. This way, we can produce metrics like Number
Of Modification In The Last Six Months. To save space, we did not list every
variation.

3 Methodology

After analyzing the available data sets (project history, static source code analysis
results), we designed a graph database schema and it is shown in Figure 1. Our goal
was to construct a graph with a structure that supports the computation of process
metrics, so the change information should be easy to obtain. Actually, it contains
seven types of nodes. The Project node represents the repository of a project.
Since we used GitHub, it has two attributes: the GitHub user and repository
identifiers. With this node, one database can be used for multiple projects. It may
be useful if we are dealing with cross-repository issue referencing, which is also
one of the GitHub features. In bigger companies or on GitHub, developers usually
contribute to multiple repositories. If we put these repositories into this database,
then the developers are connected to multiple projects, hence we can compute with
this property as well. The User node simply represents a developer. It has one
attribute, namely the number of commits. This property is provided by the GitHub
API. The Issue node represents a bug report from the issue tracker. It has two
attributes, namely opened and closed. The former is the date of the bug report,
while the latter is the date of closing the bug report or it is null if it is still open.

The Commit node represents a software version. It has three attributes, these
being hash, created and fix. The first one is the unique hash of the commit. The
second is the time stamp of the commit’s creation. Fix is a Boolean property and



Calculation of Process Metrics and their Bug Prediction Capabilities 545

it tells us whether this commit is a bug fix or not. A commit is treated as a fix if
the commit message references a bug report. This connection is provided by the
GitHub API and in the schema, it is represented as a Referenced edge between
Commit and Issue nodes. A commit is made by one user, thus we connect the
Commit nodes to the User nodes with an Author edge. Sometimes the commits do
not have such an edge because the developer is removed from GitHub. The Parent
edges of Commit nodes represent the relationship between consecutive commits.
Two commits are connected if one of them is directly followed by the other. One
commit may have multiple parents in the case of merge commits.

Figure 1: The Graph Database Schema

The bottom three nodes - File, Class, Method - represent the source code el-
ements. The Parent edges between them is the containment relationship. Since
we focused on the Java programming language, other containment relations are
not possible. Method and Class nodes have a name attribute, which is the fully
qualified name of the elements. The File nodes always have a filename attribute.
The filename contains the full path of the file. In our previous study [7, 23], in
order to avoid marking non-buggy test code as buggy, we filtered the test-related
source code elements during the collection of bug information. This filtering is
based on the file name and the qualified name. The filtered attribute of File, Class,
and Method nodes indicates whether a certain file, class or method was filtered or



546 Péter Gyimesi

not. The values of name and filename attributes are unique, and this means only
one node is created for a given source element that lives across multiple software
versions. This way, it is easy to get the changes of a file, a class or a method. This
is a crucial feature of the database in terms of creating an efficient method. The
Contains edge between commits and source elements is responsible for showing
whether a given commit actually contains the specific element.

Figure 2: Example Graph (green: project, purple: issue, red: user, blue: commit,
pink: file, yellow: class, grey: method)

The Changed edges between commits and the source elements indicate whether
an element is changed during a commit. These edges have the following attributes:
added - number of added lines, deleted - number of deleted lines and modified -
number of modified lines. These values are computed from the commit patch file,
which can also be got via the GitHub API. The patch file is based on files, hence
for classes and methods additional mapping is required. For this task, we used the
source position available from the static source code analysis. A patch file contains
sections (deltas). A delta has a begin line number and an end line number. The
mapping is carried out by checking whether a delta intersects the position of a source



Calculation of Process Metrics and their Bug Prediction Capabilities 547

code element. From the patch file, we can get the begin and end line numbers of a
change (delta) and from the SourceMeter output, we can get the source position of
a source element in a form of row numbers. Now, let us consider a delta with line
values 31-46 and a method with position 24-37. The first and last three lines of a
delta are unchanged, so we can subtract them from the section. After this step, we
get 34-43 as line values for the delta. The intersecting range is 34-37. This means
that 4 lines of the method have changed. If we look at the original version of a
delta, we can extract information about the type of the change. If the size of the
original is zero, then the change is an addition. Conversely, if the size of the new
part is zero, then it is a deletion. Otherwise it is a modification.

Now that we have a schema definition, we can proceed to the metric calculation.
Figure 2 shows a small part of the graph database created for the ANTLR4 project
(more details in Section 4). In this graph, we have at least 1 of each type of
nodes and relationships. As an example, let us show how to compute a simple
process metric called the Number of Modifications in this graph. The basis of the
calculation is the highlighted commit (uppermost) and the source element is the
upper right method. We have to look for Commit nodes that are created before the
subject commit and have a Changed relationship with the selected Method node.
We can use the Parent edge between commits, or the created attribute for selecting
the past commits. Adding the Changed edge to the match condition leads to the
desired commits, which in this example is the lowermost Commit node. With a
simple aggregation (counting) we get the value for the computed process metric.
As we mentioned earlier, Neo4j has a query language called cypher. With this
language, it is easy to formulate these process metrics. For example,

match (n:METHOD{name:’...’})<-[:CONTAINS]-(c1:COMMIT{hash:’...’}),

(n)<-[:CHANGED]-(c2:COMMIT)

where c1.created >= c2.created

return n.name as name, count(c2) as ‘Number of Modifications‘

We will not go into details about the syntax of this query language. A detailed
description is available on the official Neo4j website8. The other metrics can be
formulated into a single query too, hence it is an easy way to compute them. Table 1
lists the implemented process metrics. Switching to the class level is simple, because
all we need to do is change the node type in the query. To produce these metrics
automatically for the selected project’s selected version, we created a framework.
Below, we will describe the overall picture of the framework.

An overview of the process is shown in Figure 3. The shape in the top left
corner represents our data source, GitHub. The two connected elements are the
first steps. These were partially described in our previous study [23]. Stated briefly,
the project data is exported from the GitHub API and the source code versions
are analyzed with SourceMeter during these steps. Next, the graph nodes and
edges - according to the previously presented schema - are exported into CSV files.
These files can be directly imported into a Neo4j graph database. The next task

8https://neo4j.com/developer/cypher-query-language/



548 Péter Gyimesi

Figure 3: Overview of processes involved

is to produce the required process metrics listed in Table 1. The selection of the
implemented metrics is based on the data available to us. The cypher queries are
executed and the results are saved in separate CSV files for each metric. The next
and final step of the process is to merge the available CSV files so as to produce
the desired database. SourceMeter also exports the source elements into CSV
files with some essential properties, like qualified name, source position and static
source code metrics. In our previous article [23], we published a bug database9

that contains bug information for files and classes. In this database, bug numbers
are collected from the known and previously fixed source code defects. For a given
release version, the database contains the number of reported, but not yet fixed
bugs for each element. The source code elements affected by bugs are determined
from bug fixing modifications. From these data sets, we created databases that
contain the source code elements (files, classes, methods), the static source code
metrics and the process metrics. Also, the file and class level databases include the
actual number of bugs taken from our earlier studies. Here, these databases are
in CSV form. The first line contains the header information - as in the previously
published data sets - extended with the process metric names. The final header
element is the number of bugs. The rest of the lines are the source elements taken
from the original database along with the associated process metrics. The method
level databases have the same structure, but since we did not produce method level
bug databases previously, the number of bugs column is missing.

The tools created are published as open-source projects in the following GitHub
repository:
https://github.com/sed-szeged/BugHunterToolchain

9http://www.inf.u-szeged.hu/~ferenc/papers/GitHubBugDataSet/



Calculation of Process Metrics and their Bug Prediction Capabilities 549

Table 1: The list of implemented process metrics.

Age
Average Number of Added Lines
Average Number of Deleted Lines
Average Number of Elements Modified Together
Average Time Between Changes
Last Contributor Commits
Maximum Number of Added Lines
Maximum Number of Deleted
Maximum Number of Elements Modified Together
Number of Additions
Number of Contributor Changes
Number of Contributors
Number of Deletions
Number of Fixes
Number of Fixed in the Last Six Months
Number of Modifications
Number of Modifications in the Last Six Months
Number of Versions
Sum of Added Lines
Sum of Deleted Lines
Time Passed Since the Last Change
Weighted Age

4 Experimental Set-up

To demonstrate our method, we processed 5 of the Java projects we used in our
previous study. Table 2 lists the selected projects with some basic statistics. The
first column is the name of the systems, while the second column is the general
domain of the projects. The next two columns contain the number of commits and
the thousand lines of code. This statistics tells us that these projects are dissimilar
regarding domain and size too. During the process, we had to analyze every single
version of the systems to extract the change information. Although the analysis of
individual versions was quick, the overall run time was quite high. For the Broadleaf
Commerce project, the analysis of nearly ten thousand versions took around 200
hours. From a process perspective, it was just an initial step, and only needed to
be executed once.

The next step was to build the graph databases. The total run time for all of the
projects was around 6 hours. For a single version this time is negligible, thus the
database can be extended efficiently with the new version. Table 3 gives statistics
on the size of the graph databases. The first column shows the name of the project.



550 Péter Gyimesi

Table 2: The chosen Java projects.

Project Domain Commits kLOC
ANTLR4 Language processing 3276 85
Broadleaf Commerce E-commerce framework 9292 282
jUnit Test framework 2053 36
MapDB Database engine 1345 83
Titan Database engine 3830 119

The next two columns are the number of nodes and the number of relationships
(edges) in the graph, expressed in thousands. The next column contains the disk
space occupied by the graph databases in Megabytes. The final column is the size
of the results of source code analysis in Gigabytes. We can see that the graph is
a compact way of storing the information about the project history and process
metrics can be efficiently derived from it.

Table 3: The graph databases that we created.

Project kNodes kEdges
Size of

Graph (MB)
Size of

Raw Data (GB)
ANTLR4 24 13 069 484 18
Broadleaf
Commerce

91 145 966 4 828 220

jUnit 14 7 457 300 9
MapDB 13 4 629 208 7
Titan 219 21 471 804 30

After setting up the database, we computed the process metrics for 25 release
versions of the systems (5 each). The release versions were selected just like those
in our previous study [23], namely at 6-monthly intervals. Due to smaller inactive
periods in project development, it may happen that the bug numbers are zero in a
given release version. In such cases, we dropped this release version, then the time
interval between some of the versions was larger than six months.

Lastly, we constructed bug databases (at the file and class levels) for the selected
5 projects’ 25 release versions with the computed process metrics. What is more,
we created method-level databases - without bug information - which also include
both product and process metrics.



Calculation of Process Metrics and their Bug Prediction Capabilities 551

5 Evaluation

We applied machine learning algorithms to our bug database in order to check
whether it was suitable for bug prediction. In the preliminary step, similar to our
previous study, we grouped the source elements into two classes based on the bug
numbers. Source elements with zero bug numbers formed a non-defective class,
while the others formed a defective class. The structure of the learning tables was
the following: it contained a unique id for every instance; next, it contained the
predictors (22 software process metrics); lastly it contained the label of the class as
Boolean values (true - defective, false - non-defective). Separate learning tables were
constructed for files and classes in each release version, hence we got 50 learning
tables in total. The number of instances in a defective class was much smaller than
the number of instances in a non-defective class. To avoid any distortion in the
results, we applied random under sampling to the databases. This method helps
to balance the number of positive and negative instances in the training set. To
achieve more reliable results, we applied this method ten times to the data sets and
computed an average.

We used Weka10, the popular machine learning library to perform the training
part. For the evaluation part, we used the same set of algorithms as in our earlier
study [23]. Namely,

• NaiveBayes

• NaiveBayesMultinomial

• Logistic

• SGD

• SimpleLogistic

• SMO

• VotedPerceptron

• DecisionTable

• OneR

• PART

• J48 (C4.5)

• RandomForest

• RandomTree

10http://www.cs.waikato.ac.nz/~ml/weka/



552 Péter Gyimesi

We used 10-fold cross validation and we measured the performance with F-
measure metrics that are defined by the following:

precision = TP
TP+FP

recall = TP
TP+FN

F −measure = 2 · precision·recall
precision+recall ,

where TP(True Positive) is the number of instances that were predicted as defective
and observed as defective, FP(False Positive) is the number of instances that were
predicted as defective but observed as non-defective, FN (False Negative) is the
number of instances that were predicted as non-defective but observed as defective.

Table 4: Average F-measure values at the class level.

Project #1 #2 #3 #4 #5

ANTLR4 0.7235 0.5502 0.6771 0.7101 0.7765

Broadleaf C. 0.6772 0.6736 0.6812 0.6729 0.6923

MapDB 0.5626 0.6560 0.7179 0.7261 0.7426

jUnit 0.6989 0.6522 0.5949 0.6156 0.8127

Titan 0.5712 0.6231 0.6640 0.6543 0.7423

Table 5: Average F-measure values at the file level.

Project #1 #2 #3 #4 #5

ANTLR4 0.7252 0.7548 0.6961 0.7334 0.6872

Broadleaf C. 0.6402 0.6759 0.6799 0.6969 0.6869

MapDB 0.5652 0.7879 0.6606 0.6930 0.8362

jUnit 0.7279 0.6102 0.7000 0.6792 0.5384

Titan 0.6082 0.7147 0.7108 0.7303 0.6924

The goal of our first investigation was to find out whether the created bug
databases with the process metrics were suitable for bug prediction. We evalu-
ated the 13 algorithms on all 25 release versions and only used process metrics
as predictors. Our first observation was that the F-measure values at the class
level generally improved with time except for the jUnit project. Table 4 shows the
average F-measure values at the class level for all 25 versions. The first column
contains the project names, while the next columns are the average results for each
version in chronological order. The first is the earliest in time, the following is the
next, and so on. From this table, we can see that the values increase slightly with
time. One possible explanation for this is the nature of the metrics used. Most
of the process metrics are based on temporal characteristics, hence these values



Calculation of Process Metrics and their Bug Prediction Capabilities 553

may be more reliable with bigger time intervals. At the file level, things are not
so straightforward. In the case of the ANTLR4 and jUnit projects, the values do
not follow this trend, as shown in Table 5. This may be due to the varying size of
the training sets, but as we cannot generalize this observation, more investigation
is needed to learn the reason for it.

Table 6: Comparison of F-measure values at the class level.

Project Product metrics Process metrics

ANTLR v4 0.7179 0.6771

Broadleaf Commerce 0.7544 0.6812

MapDB 0.6999 0.6560

jUnit 0.7233 0.6156

Titan 0.7058 0.7423

Table 7: Comparison of F-measure values at the file level.

Project Product metrics Process metrics

ANTLR v4 0.7061 0.6961

Broadleaf Commerce 0.6955 0.6799

MapDB 0.6306 0.7879

jUnit 0.5600 0.6792

Titan 0.5730 0.6924

In our previous study [23], as we reported F-measure values from release versions
that have the most bug entries, we will now compare the results for these versions.
Tables 6 and 7 allow us to compare the average F-measure values got with the two
different sets of predictors for these release versions. Our previous database at the
file level contains some process metrics, hence we once again applied the machine
learning algorithms without these metrics. Also, we repeated the learning process
at the class level. From these values, we can see that the process metrics performed
worse than the product metrics at the class level in 4 out of 5 cases. At the file
level, process metrics performed better than the product metrics in 3 out of 5 cases.
Despite process metrics not performing well in the same cases as product metrics,
in other cases the F-measure values we got indicate that the former perform more
robustly than the latter. As we mentioned earlier, process metrics perform better
in the later versions than in the earlier ones. At the file level, the F-measure values
vary more with product metrics and the best performing algorithms are different
for each version. With the process metrics, more or less the same set of algorithms
are at the top for all of the cases studies. We did not include every result, due to
the large amount of algorithms and learning tables. The detailed F-measure tables
can be found in the online appendix.



554 Péter Gyimesi

Table 8: F-measure values at the class level.

Algorithm ANTLR4 Broadleaf MapDB jUnit Titan AVG

RandomForest 0.7328 0.7638 0.7483 0.6702 0.7997 0.7430

DecisionTable 0.6704 0.7147 0.6719 0.6712 0.7742 0.7005

SMO 0.7059 0.7015 0.6682 0.6232 0.7788 0.6955

OneR 0.7101 0.6982 0.6065 0.6770 0.7597 0.6903

SimpleLogistic 0.6970 0.7059 0.6163 0.6345 0.7878 0.6883

PART 0.6730 0.7056 0.6755 0.6221 0.7468 0.6846

J48 0.6971 0.6953 0.6618 0.6077 0.7567 0.6837

SGD 0.6196 0.7039 0.6838 0.6125 0.7832 0.6806

RandomTree 0.6530 0.6861 0.6547 0.6365 0.7540 0.6769

Logistic 0.5827 0.6885 0.6459 0.6006 0.7441 0.6523

NaiveBayes 0.7106 0.5846 0.6868 0.6457 0.5672 0.6390

NaiveBayesMultinomial 0.7065 0.5920 0.6042 0.5349 0.6689 0.6213

VotedPerceptron 0.6432 0.6159 0.6040 0.4663 0.7290 0.6117

In Table 8, we list the F-measure values for the versions with the most bug
entries. The first column contains the machine learning algorithm names that we
used. The subsequent columns contain the resulting F-measure values for each
project. The last column is the average F-measure value over projects. The table
is ordered by the average value in decreasing order. Here, we notice that tree-,
rule-, and function-based algorithms performed the best. The highest average F-
measure value is 0.7430, while the lowest is 0.6117. The overall highest F-measure
value in these versions is 0.7997 and it was achieved by the Titan project. The best
performing algorithm is the RandomForest method. We should add that process
metrics did not preform the best in these release versions.

Table 9 shows the resulting F-measures for the versions with the most bug
entries. The structure of the table is the same as that for Table 8. The same
set of algorithms perform the best in these cases as well. The performance of the
Bayesian methods varies for each version, hence we cannot say that using these
metrics, they are the best to predict bugs. The best results are over 0.8 (MapDB
project) and the worst result is 0.5278; however, on average the F-measure values
are around 0.7. The highest average F-measure value is 0.7448, while the lowest
is 0.6622. In summary, the results obtained appear to indicate that the databases
with the computed process metrics are suitable for bug prediction purposes and the
best performing algorithms are the RandomForest and DecisionTable methods.

Next, we examined whether there were any relationships among the metrics.
Since our databases contain both product and process metrics for classes and meth-
ods, we computed correlations among these values. As the results are similar to
each other between the versions and listing the correlations for all 25 versions would
take up too much space, we will only present the results for a single version. Instead



Calculation of Process Metrics and their Bug Prediction Capabilities 555

Table 9: F-measure values at the file level.

Algorithm ANTLR4 Broadleaf MapDB jUnit Titan AVG

RandomForest 0.7804 0.7328 0.8180 0.6659 0.7271 0.7448

DecisionTable 0.7299 0.7152 0.8143 0.7061 0.7103 0.7352

SimpleLogistic 0.7234 0.6910 0.7869 0.7071 0.7094 0.7236

SGD 0.7033 0.7025 0.8036 0.6857 0.7159 0.7222

SMO 0.7192 0.7055 0.8085 0.6893 0.6796 0.7205

NaiveBayesMultinomial 0.6920 0.6342 0.8152 0.6732 0.7533 0.7136

OneR 0.6911 0.6642 0.7786 0.7371 0.6781 0.7098

J48 0.6553 0.6994 0.7983 0.6614 0.7304 0.7090

PART 0.6957 0.6907 0.7879 0.6552 0.6575 0.6974

RandomTree 0.6826 0.6740 0.7261 0.6933 0.6896 0.6931

VotedPerceptron 0.6267 0.6340 0.8019 0.6149 0.7406 0.6836

Logistic 0.6765 0.6950 0.6699 0.6649 0.6821 0.6777

NaiveBayes 0.6732 0.6008 0.8334 0.6757 0.5278 0.6622

Figure 4: Correlation of method metrics

of including the correlation matrices that have over a hundred rows and columns,
we illustrated these with colored tables (Figures 4, 5 and 6). The black cells denote
the low absolute value of the correlation (close to zero), while the white cells denote
the high absolute value of the correlation (near one or minus one). Figure 4 shows
the correlation of method metrics tested. The product metrics (including rule vi-
olations) are separated from the process metrics by a red line. From this image
(bottom right quarter), we can see that the process metrics correlate more with
each other than with product metrics. There are some correlation values around
0.4-0.5 between a few size-based product metrics (Lines of Code, Number of State-



556 Péter Gyimesi

Figure 5: Correlation of class metrics

Figure 6: Correlation of file metrics

ments) and process metrics (Number of Added Lines, Number of Modifications),
but in general there are no high correlation values.

If we look at the correlation results between any two class metrics in Figure 5,
we notice that the relation between process and product metrics is a little clearer.
Nevertheless, the correlation is still noticeably higher between the same type of
metrics. At the file level (Figure 6), as the database contains only two product
metrics, we cannot draw any conclusions from it.

From the correlation results presented above, we can say that process metrics
are of a different nature from product metrics. These metrics characterize the
source code elements from a different perspective than product metrics do. The
full correlation matrices, the results of the evaluation and the databases created



Calculation of Process Metrics and their Bug Prediction Capabilities 557

are accessible as an online appendix at the following URL:
http://www.inf.u-szeged.hu/~pgyimesi/papers/ActaCybernetica2016/

6 Conclusions and Future Work

In this study, we presented a method that efficiently computes software process met-
rics in a graph database. Also, we made an implementation available on GitHub as
an open-source project that is capable of computing 22 process metrics. We selected
5 Java projects and with our implementation, we processed these systems and pro-
duced databases for 25 release versions that were selected from an earlier study.
The databases created contain the implemented process metrics for files, classes
and methods. Afterwards, we employed our previously published bug databases
(at the file and class levels) and extended them with process metrics; then we ap-
plied 13 machine learning algorithms on them to investigate whether the database
was suitable for bug prediction purposes and we achieved promising results. Based
on the F-measure values, we found that tree- and rule-based methods perform the
best and, in particular, the RandomForest method performed well in every case.

In the future, we intend to implement more process metrics and experiment with
new ones. We also plan to extend the list of processed systems. Furthermore, we
would like to set up a method-level bug database and to evaluate the bug prediction
capability of method-level process metrics.

7 Acknowledgements

I would like to express my gratitude to my supervisor Dr. Rudolf Ferenc for his
useful comments and remarks. He also helped clarify certain points and issues
during the study.

References

[1] Bernstein, Abraham, Ekanayake, Jayalath, and Pinzger, Martin. Improving
defect prediction using temporal features and non linear models. In Ninth
international workshop on Principles of software evolution: in conjunction
with the 6th ESEC/FSE joint meeting, pages 11–18. ACM, 2007.

[2] Bhattacharya, Pamela, Iliofotou, Marios, Neamtiu, Iulian, and Faloutsos,
Michalis. Graph-based analysis and prediction for software evolution. In Pro-
ceedings of the 34th International Conference on Software Engineering, pages
419–429. IEEE Press, 2012.

[3] Catal, Cagatay. Software fault prediction: A literature review and current
trends. Expert systems with applications, 38(4):4626–4636, 2011.



558 Péter Gyimesi

[4] D’Ambros, Marco, Lanza, Michele, and Robbes, Romain. An extensive com-
parison of bug prediction approaches. In 2010 7th IEEE Working Conference
on Mining Software Repositories (MSR 2010), pages 31–41. IEEE, 2010.

[5] Fischer, Michael, Pinzger, Martin, and Gall, Harald. Populating a release
history database from version control and bug tracking systems. In Software
Maintenance, 2003. ICSM 2003. Proceedings. International Conference on,
pages 23–32. IEEE, 2003.

[6] Graves, Todd L, Karr, Alan F, Marron, James S, and Siy, Harvey. Predicting
fault incidence using software change history. IEEE Transactions on software
engineering, 26(7):653–661, 2000.

[7] Gyimesi, Péter, Gyimesi, Gábor, Tóth, Zoltán, and Ferenc, Rudolf. Charac-
terization of source code defects by data mining conducted on GitHub. In In-
ternational Conference on Computational Science and Its Applications, pages
47–62. Springer, 2015.

[8] Hassan, Ahmed E. Predicting faults using the complexity of code changes.
In Proceedings of the 31st International Conference on Software Engineering,
pages 78–88. IEEE Computer Society, 2009.

[9] Jureczko, Marian and Madeyski, Lech. Towards identifying software project
clusters with regard to defect prediction. In Proceedings of the 6th International
Conference on Predictive Models in Software Engineering, page 9. ACM, 2010.

[10] Krishnan, Sandeep, Strasburg, Chris, Lutz, Robyn R, and Goševa-
Popstojanova, Katerina. Are change metrics good predictors for an evolving
software product line? In Proceedings of the 7th International Conference on
Predictive Models in Software Engineering, page 7. ACM, 2011.

[11] Madeyski, Lech and Jureczko, Marian. Which process metrics can significantly
improve defect prediction models? An empirical study. Software Quality Jour-
nal, 23(3):393–422, 2015.

[12] Malhotra, Ruchika. A systematic review of machine learning techniques for
software fault prediction. Applied Soft Computing, 27:504–518, 2015.

[13] Menzies, T., Krishna, R., and Pryor, D. The Promise Repository of Empirical
Software Engineering Data, 2015. http://openscience.us/repo. North Carolina
State University, Department of Computer Science.

[14] Menzies, Tim, Milton, Zach, Turhan, Burak, Cukic, Bojan, Jiang, Yue, and
Bener, Ayşe. Defect prediction from static code features: current results,
limitations, new approaches. Automated Software Engineering, 17(4):375–407,
2010.



Calculation of Process Metrics and their Bug Prediction Capabilities 559

[15] Moser, Raimund, Pedrycz, Witold, and Succi, Giancarlo. Analysis of the re-
liability of a subset of change metrics for defect prediction. In Proceedings of
the Second ACM-IEEE international symposium on Empirical software engi-
neering and measurement, pages 309–311. ACM, 2008.

[16] Moser, Raimund, Pedrycz, Witold, and Succi, Giancarlo. A comparative anal-
ysis of the efficiency of change metrics and static code attributes for defect
prediction. In 2008 ACM/IEEE 30th International Conference on Software
Engineering, pages 181–190. IEEE, 2008.

[17] Munson, John C and Elbaum, Sebastian G. Code churn: A measure for
estimating the impact of code change. In Software Maintenance, 1998. Pro-
ceedings., International Conference on, pages 24–31. IEEE, 1998.

[18] Nagappan, Nachiappan and Ball, Thomas. Use of relative code churn measures
to predict system defect density. In Proceedings. 27th International Conference
on Software Engineering, 2005. ICSE 2005., pages 284–292. IEEE, 2005.

[19] Radjenović, Danijel, Heričko, Marjan, Torkar, Richard, and Živkovič, Aleš.
Software fault prediction metrics: A systematic literature review. Information
and Software Technology, 55(8):1397–1418, 2013.

[20] Rahman, Foyzur and Devanbu, Premkumar. How, and why, process metrics
are better. In Proceedings of the 2013 International Conference on Software
Engineering, pages 432–441. IEEE Press, 2013.

[21] Ratzinger, Jacek, Pinzger, Martin, and Gall, Harald. EQ-Mine: Predicting
short-term defects for software evolution. In International Conference on Fun-
damental Approaches to Software Engineering, pages 12–26. Springer, 2007.

[22] Shihab, Emad, Jiang, Zhen Ming, Ibrahim, Walid M, Adams, Bram, and Has-
san, Ahmed E. Understanding the impact of code and process metrics on
post-release defects: a case study on the Eclipse project. In Proceedings of the
2010 ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement, page 4. ACM, 2010.

[23] Tóth, Zoltán, Gyimesi, Péter, and Ferenc, Rudolf. A Public Bug Database
of GitHub Projects and Its Application in Bug Prediction. In International
Conference on Computational Science and Its Applications, pages 625–638.
Springer, 2016.

[24] Zimmermann, Thomas, Premraj, Rahul, and Zeller, Andreas. Predicting
defects for Eclipse. In Predictor Models in Software Engineering, 2007.
PROMISE’07: ICSE Workshops 2007. International Workshop on, pages 9–9.
IEEE, 2007.


