Implementing Global Constraints as Structured Networks of
Elementary Constraints

David Handk

Constraints serve as a basis for Constraint Logic Programming (CLP), a group of logic pro-
gramming (LP) languages which are usually embedded into a host language such as C, Java
or Prolog. A branch of CLP is CLP(FD), a constraint language which operates on variables of
integer values. FD here stands for finite domain, because in the constraint store each variable
is represented by the finite set of values which it can take. These variables are connected by
the constraints, which propagate the change of the domain of one variable to the domains of
others. A constraint can be thought of like a sleeping "daemon" which wakes up when the
domain of at least one of its variables is changed, propagates the change and falls asleep again.
This change can be induced by another constraint or by the labeling process, which enumer-
ates the solutions by gradually substituting all possible values into the variables. There are two
major implementation techniques for CLP(FD) constraints: indexicals and global constraints.
The former always operate on a fixed number of variables while the latter are more generic
and can work with a variable number of variables. These constraints are usually handled very
differently for efficiency reasons.

[1] introduces a new aspect of defining and describing global finite domain constraints based
on graphs. It gives a description language which enables mathematicians, computer scientists
and programmers to share information on global constraints in a way that all of them under-
stands. It also helps to categorize global constraints, and as a most important feature, it makes
possible to write programs which, given only this abstract description, can automatically gen-
erate parsers, type checkers and pruners (propagators) for specific global constraints.

To define a constraint, an initial graph is generated. The arguments (variables) of the global
constraints are assigned to its nodes, while a single elementary constraint is assigned to each of
its arcs (elementary constraints are very simple and easy to handle, like A=B). The final graph
consists of those arcs of the initial graph for which the elementary constraints hold. The global
constraint itself succeeds if a given set of graph properties (i.e. restrictions on the number of
arcs, sources, connected components, etc.) holds for this final graph. The description language
contains terms to express type and value restrictions on the arguments of the constraint, to
determine the graph generator that creates the initial graph, and to specify the elementary
constraint and the graph properties that must hold for the final graph.

To put this theory into practice, an interpreter is being written which understands a lan-
guage very similar to the one defined in [1]. The interpreter is being implemented in SICStus
Prolog and its main purpose is to serve as a prototype, therefore the description language was
modified slightly in order to suit the syntax of Prolog, thus removing the burden of implement-
ing a parser as well. The interpreter in its current state of development can read the description
of a constraint, and given a set of specific values it can check if the values meet the type and
value restrictions posed by the constraint and whether the constraint holds for them. Therefore
it might be regarded as a complex relation checker. Although it doesn’t do any pruning yet,
some minor mistakes and inconvenient notations already cropped up by using it.

A design have been created about the extension of the interpreter with pruning capabili-
ties. Here the line of thought is reversed: we assume that the constraint holds, and from the
required graph properties we try to deduce conclusions on the domains of its variables. When
a constraint wakes up, some of the elementary constraints assigned to the arcs of the graph are
sure to hold, some are sure to fail while the state of the rest is yet uncertain. By knowing what
graph properties should be achieved and what are the domains of the variables currently, some

39



of these uncertain constraints can be forced into success or into failure. The global constraint
finally becomes entailed when there aren’t any uncertain arcs left.

The propagator using the descried algorithm will be implemented and fitted into the
CLP(FD) library of SICStus Prolog by utilizing the well defined interface of user defined global
constraints. This way it will be possible to thoroughly test both the program and the theory
itself in a trusted environment. According to my plans, a working prototype will already be
available at the conference and I will be able to present it along with new observations and
experiences. Finally, if this case study proves the theory to be worthy of further practical
investigation, an emphasis could be put on efficiency matters also when implementing new
interpreters and perhaps pruner algorithm generators.

References

[1] Beldiceanu, Nicolas: "Global Constraints as Graph Properties on Structured Network of
Elementary Constraints of the Same Type", SICS Technical Report T2000/01, ISSN 1100-3154,
January 28, 2000

40



