

Optimizing Abstractive Arabic Summarization via RLHF and DPO with Llama 2

Mram Kahla¹, Zijian Győző Yang²

¹Pázmány Péter Catholic University, Faculty of Information Technology and Bionics
kahla.mram@itk.ppke.hu

³HUN-REN Hungarian Research Centre for Linguistics
yang.zijian.gyozo@nytud.hun-ren.hu

Abstract. Given the advantages observed with Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) in English, it is promising to explore their effectiveness for abstractive summarization in languages with complex morphological and syntactic features, such as Arabic. In this study, we fine-tune the Llama 2 model, which demonstrates a significant capability to enhance summarization results. We highlight how Llama 2, combined with advanced techniques like RLHF and DPO, markedly improves the quality of Abstractive Arabic summarization, showcasing the model's superior performance in this challenging task. Furthermore, the AraSum corpus plays a critical role in achieving outstanding results, highlighting its effectiveness in improving the performance of summarization models. While this work focuses on Arabic, the techniques and insights presented are language-agnostic, offering broader applications for abstractive summarization in other languages. Additionally, we introduce the AraRLHF and AraDPO datasets, which will be made publicly available to support reproducibility and advance research in Arabic NLP.

Keywords: abstractive summarization, Reinforcement Learning, Arabic, RLHF, DPO, Direct Preference Optimization, Llama 2

1 Introduction

In Natural Language Processing (NLP), automatic text summarization stands as a pivotal task, catering to the ever-increasing volume of information available in today's digital age.

Unlike extractive summarization (Zhang et al., 2018) which selects and rephrases existing segments from the original text, abstractive summarization (See et al., 2017) involves generating novel sentences that capture the essence of the source material. This process demands a deep understanding of semantics, contextual nuances, and linguistic structures to produce coherent and concise summaries.

Specifically in the context of the Arabic language, abstractive summarization holds significant promise and challenges due to the language's intricate syntax, rich morphology, and diverse linguistic features.

In recent years, reinforcement learning (RL) has emerged as a promising paradigm for enhancing sequence generation tasks in NLP, such as abstractive summarization and question-answering. RL enables models to align outputs with human preferences (Ziegler et al., 2019) and leverage human feedback to improve factual accuracy and user alignment (Nakano et al., 2021). With its ability to learn optimal decision-making policies through interaction with an environment, RL offers an effective approach to refining abstractive summarization models, particularly when the goal is to align generated summaries with human preferences.

The outcomes obtained in the English language summarization through Reinforcement Learning from Human Feedback (RLHF) demonstrate significant improvements in the quality of the generated text (Stiennon et al., 2020) offering a clear advantage over larger supervised models that rely solely on traditional training methods.

While RLHF has proven effective in adjusting model outputs to better reflect human preferences, it is not without its limitations. A major limitation of RLHF is that its process is considerably more complex than traditional supervised learning. To address this complexity, methods like Direct Preference Optimization (DPO) (Rafailov et al., 2023) have been introduced as simpler training paradigms. DPO enables language models to be trained from human preferences without the added complexity of reinforcement learning while performing as well as or even better than existing RLHF algorithms.

The objective of this research is to explore the application of Reinforcement Learning from Human Feedback and Direct Preference Optimization to the task of abstractive Arabic text summarization. Our main contribution lies in applying Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) to the task of abstractive text summarization for the Arabic language. We demonstrate how LLaMA 2, when combined with these advanced techniques and the AraSum corpus, significantly enhances the quality of Arabic text summarization. To foster reproducibility and encourage further research in Arabic NLP, we will release the AraRLHF and AraDPO datasets, which consist of human preference data specifically tailored for RLHF and DPO models. The datasets will be available on our GitHub¹.

The rest of the paper is structured as follows: Section 2 reviews related work. Section 3 outlines the methodology. Section 4 discusses the corpora used, and Section 5 details the models used. Section 6 presents our experiments and results, and finally, Section 7 concludes the paper.

2 Related work

Reinforcement learning from human feedback (RLHF), originally developed for training simple robots in simulated environments and Atari games (Christiano et al., 2017; Ibarz et al., 2018).

¹ <https://github.com/ppke-nlpg/AraSum>

In terms of reinforcement learning with human feedback to train text summarization models, Böhm et al. (2019) learn a reward function from 2,500 human judgments of CNN/DM (Nallapati et al., 2016) summaries that are used in a reinforcement learning setting.

A similar method of recursive task decomposition was used for summarizing books in (Wu et al., 2021). They combine learning from human feedback with recursive task decomposition by using models trained on smaller parts of the task to assist humans in giving feedback on the broader task.

Ziegler et al. (2019) fine-tune pre-trained language models with reinforcement learning by exploiting a reward model trained from human preferences. Then the model is used to generate summaries over Reddit TL;DR, and CNN/DM datasets. The limitation of their framework is that their labelers prefer extractive summaries and there are low agreement rates between labelers and researchers.

Stiennon et al. (2020) followed their previous work on learning from human feedback and proposed to gather a dataset composed of human preferences between pairs of summaries as the first step. Then the prediction of the human-preferred summary is generated by a reward model (RM) trained via supervised learning. Lastly, the score produced by the RM is maximized as much as possible by a policy trained via reinforcement learning. This approach significantly outperforms both human reference summaries and much larger models fine-tuned with supervised learning alone.

Although RLHF has proven effective in aligning model outputs with human preferences, it has certain limitations, such as the high cost and complexity of training reward models, and the potential for misalignment between the reward model and human preferences (Casper et al., 2023). To address the complexity of RLHF optimization, Rafailov et al. (2023) introduced Direct Preference Optimization (DPO) as an alternative approach. Unlike RLHF, DPO eliminates the need for training a reward model and instead directly trains the language model based on human preferences using a simple binary cross-entropy objective.

Human feedback has been utilized to improve various AI systems across different tasks. For instance, in dialogue systems, Jaques et al. (2019) employed crowd-sourced human labeling to judge whether dialogue generated by an offline RL agent was fluent and amicable. Similarly, in the translation task, Kreutzer et al. (2018) collected both explicit and implicit human feedback to improve a machine translation model by integrating the feedback into a reinforcement learning framework. In review generation, Cho et al. (2018) developed models of coherence from existing texts and used these models as RL rewards to enhance long-form generation. For question-answering, Nakano et al. (2021) fine-tuned GPT-3 to answer long-form questions within a web-browsing environment. This setup enabled the model to navigate the web and incorporate human feedback to optimize answer quality through imitation learning. Additionally, human feedback has been applied to other tasks, such as evidence extraction (Perez et al., 2019), story generation (Zhou and Xu, 2020), and semantic parsing (Lawrence and Riezler, 2018).

The successful integration of RLHF into language technology was notably advanced by the development of ChatGPT (Ouyang et al., 2024). This research achieved significant improvements in the model’s ability to generate responses that align more closely with human-like communication. The approach began with a supervised fine-tuning phase, where the large language model was trained on prompts containing specific instructions. This was followed by an additional fine-tuning phase using reinforcement learning, further enhancing the model’s response quality and alignment with human preferences.

Regarding abstractive summarization in the Arabic language, one study by Azmi and Altmami (2018) introduced a four-stage abstractive summarization framework where the core of the system is an extractive summarizer. Training a model specifically for headline generation was presented in (Al-Maleh and Desouki, 2020). Another research by Elmadani et al. (2020) utilized the PreSumm approach along with a multilingual BERT model for fine-tuning both extractive and abstractive models. AraBART Introduced by Kamal Eddine et al. (2022), a pre-trained encoder-decoder model designed for abstractive summarization tasks tailored to the Arabic language. Furthermore, an analysis by Chouikhi and Al-suhaibani (2022) conducted a comparison analysis of various Arabic language models’ performance in the task of text summarization.

There are two additional experiments conducted as part of the abstractive Arabic summarization task. In the first experiment, Kahla et al. (2021) created the first monolingual, human-written corpus for abstractive Arabic text summarization and used it to fine-tune several language models: m-BERT, AraBERT, and m-BART-50. To enhance the performance of the baseline systems, a cross-lingual knowledge transfer method was applied. In the second experiment, Kahla et al. (2022) extended the Arabic summarization corpus, AraSum², and made it publicly available. This expanded corpus contains approximately 50,000 Arabic articles with their corresponding leads. The experiment involved pre-training monolingual and trilingual BART models for Arabic, as well as fine-tuning these models and the mT5 model for abstractive summarization using the AraSum corpus. Results showed that the models trained on AraSum performed well, surpassing the state-of-the-art XL-Sum (Hasan et al., 2021) model at the time of publication.

In terms of Reinforcement Learning from Human Feedback and Direct Preference Optimization for the Arabic language, there is a noticeable scarcity of existing research. Leveraging RLHF and DPO presents a powerful technique that deserves application within such complex linguistic contexts.

3 Methodology

This research explores the application of RLHF and DPO to the task of abstractive Arabic text summarization.

² <https://github.com/ppke-nlpg/AraSum>

3.1 Reinforcement Learning experiments

The RLHF approach we adopt is based on OpenAI’s methodology (Stiennon et al., 2020), consisting of three main steps:

- **Step 1: Collect demonstration data, train a supervised policy, and send comparisons to humans.**

Humans are provided with reference texts and summaries generated by fine-tuning a language model. They are then asked to choose the best summary from the given samples.

- **Step 2: Collect comparison data, and train a reward model (RM).** A reward model is trained using the human feedback collected in the first step. Based on the annotations provided by the human evaluators, this model predicts the likelihood (log odds) that a given summary is preferred.
- **Step 3: Optimize a policy against the reward model using Proximal Policy Optimization (PPO).**

The output of the reward model serves as a reward measure. The supervised policy will be fine-tuned to maximize this reward using reinforcement learning, with the Proximal Policy Optimization (PPO) algorithm guiding the optimization process.

3.2 Direct Preference Optimization experiments

For the DPO approach, we adopt the method proposed by Rafailov et al. (2023), which simplifies the RLHF process by eliminating the need to fit a reward model. Instead, DPO directly trains language models based on human preferences. The DPO approach consists of the following steps:

- **Step 1: Collect preference data from human evaluators.**

Human evaluators are provided with multiple summaries for a given input and asked to select the one they prefer.

- **Step 2: Apply Direct Preference Optimization.**

DPO bypasses the need for a reward model and directly utilizes the human preference data to train the language model. The model is optimized by applying a binary cross-entropy objective, where it learns to assign higher probabilities to the summaries preferred by the human evaluators.

- **Step 3: Fine-tune the language model based on preferences.**

The language model is fine-tuned to generate summaries that better align with human preferences, achieving this without the need for reinforcement learning algorithms.

4 Corpora used

For our experiments, two datasets are required: The first dataset is used in RLHF to train the reward model to assess summary quality, while in DPO, it directly guides the optimization of the language model based on human preferences. The second dataset is used in the final step of both methodologies, which involves fine-tuning the models based on the collected preferences.

4.1 Human Preference Dataset

The first dataset, named AraRLHF and AraDPO, is utilized in the initial step of both RLHF and DPO, focusing on collecting preference data from human evaluators. This dataset is then employed in Step 2 of each methodology. In RLHF, the AraRLHF dataset is used to train the reward model (RM), which predicts the quality of generated summaries based on the collected human preferences. In DPO, the AraDPO dataset is used directly to train the language model based on these preferences, without the need for a reward model.

To create this dataset, we utilized manual evaluation results from our previous research (Kahla et al., 2021), where we fine-tuned transformer models for abstractive Arabic text summarization using the first version of AraSum. This corpus includes 21,508 articles and their corresponding leads. The transformer models evaluated were as follows:

- m-BERT model (Devlin et al., 2019): fine-tuned for Arabic.
- AraBERT model (Antoun et al., 2020): fine-tuned for Arabic.
- m-BART-50 model (Tang et al., 2020): fine-tuned for Arabic.
- m-BERT+HUN model (Yang et al., 2021): originally fine-tuned for Hungarian and then fine-tuned for Arabic.
- m-BERT+ENG model: first fine-tuned for English and then fine-tuned for Arabic.
- m-BART-50+RUS model: first fine-tuned for Russian then fine-tuned for Arabic.

The evaluation involved three human evaluators who evaluated the outputs of these six models, indicating their preferred summaries for a given input by assigning scores to each summary from 100 random samples, see figure 1.

The human evaluation data underwent preprocessing and was restructured to be suitable for training the reward model in RLHF and for direct use in DPO.

The AraRLHF dataset consists of 1,746 samples, randomly shuffled and divided into 80% for training and 20% for testing. Similarly, the AraDPO dataset contains 29,682 samples, also shuffled and split into 80% for training and 20% for testing.

The AraRLHF and AraDPO datasets will be made publicly available upon publication of this paper to support reproducibility and encourage further research in Arabic NLP. The datasets will be accessible at the following link: <https://github.com/ppke-nlpg/AraSum>

4.2 Dataset for Fine-tuning Llama 2

For fine-tuning the Llama 2, we used the extended version of the AraSum corpus (Kahla et al., 2022), which contains 49,604 articles along with their corresponding leads. In addition, we used the Arabic portion of the multilingual XL-Sum corpus (Hasan et al., 2021), which consists of 46,897 articles and their corresponding leads. Both datasets are designed for abstractive text summarization.

For instruction fine-tuning, we used the prompt template recommended by the Stanford Alpaca research (Taori et al., 2023):

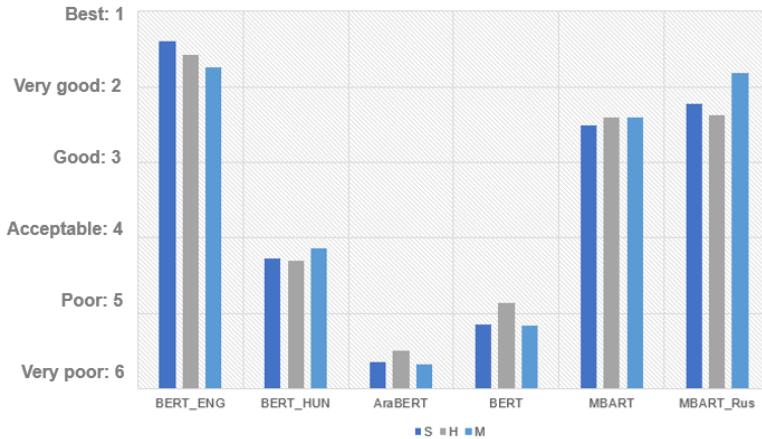


Fig. 1: Human evaluation results from our previous study (Kahla et al., 2021), where H, S, and M represent the human evaluators.

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

Instruction:

Summarize the article written in Arabic below.

Input:

[article text]

Response:

[article summary]

Because the Llama 2 model is English-centric, we used an English template.

5 Experiments and Results

In our first experiment, we fine-tuned state-of-the-art Arabic summarization models with RLHF, specifically the mT5++ models from our previous research (Kahla et al., 2022).

In the next experiment, we performed supervised fine-tuning (SFT) on the Llama 2 model for Arabic summarization. Following that, we applied RLHF and DPO fine-tuning to the SFT model.

Llama 2 (Touvron et al., 2023b) is an advanced large language model developed by Meta, marking the second iteration of the LLaMA series (Touvron et al., 2023a). It represents a significant advancement in natural language processing. Llama 2 is available in various sizes: a 7-billion-parameter model, a 13-billion-parameter model, and a 70-billion-parameter model. For our experiments, we

fine-tuned the smallest model with 7 billion parameters. For supervised fine-tuning, we used the Stanford Alpaca implementation (Taori et al., 2023). The training hyperparameters are as follows: learning rate = 2e-5; global batch size = 256; epoch = 3; warmup ratio = 0.03; sequence length = 1800; bf16; deepspeed. For this task, we utilized eight NVIDIA A100 GPUs, each with 80GB of memory.

For RLHF experiments, we applied the Transformer Reinforcement Learning X implementation from CarperAI (Havrilla et al., 2023). The training hyperparameters are as follows: learning rate = 1e-5; global batch size = 4; epoch = 3; sequence length = 1800; number layers unfrozen = 2.

For the reward model, we fine-tuned an XLM-RoBERTa-large (Conneau et al., 2020) model for the Arabic summarization quality prediction model. For this task, we use the Hugging Face implementation³. The training hyperparameters are as follows: learning rate = 2e-5; global batch size = 32; epoch = 10; sequence length = 1024. We also conducted experiments with the mT5 base and large models (Xue et al., 2021), but they only achieved a Pearson correlation of 10–20.

In Table 1, we can see the results of the reward model experiments. The evaluation metrics are the same as those used in the research by Yang and Laki (2023): Pearson Correlation, Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). We achieved the highest Pearson correlation of **88** with 5 epochs. We used this checkpoint in subsequent experiments.

	Pearson correlation ↑	MAE ↓	RMSE ↓
XLM-RoBERTa-base	81.25	0.83	1.04
XLM-RoBERTa-large	88.00	0.69	0.86
mT5-base	10.73	1.53	1.75
mT5-large	21.49	1.77	1.97

Table 1: Reward model experiments

For the DPO experiments, we utilized the Hugging Face implementation⁴, which is based on the original DPO research (Rafailov et al., 2023). The training hyperparameters are as follows: learning rate = 5e-4; global batch size = 16; epoch = 3; sequence length = 1800.

In both the RLHF and DPO experiments, we tested different hyperparameters, with the best ones described above. For these tasks, we utilized a single NVIDIA A100 GPU with 80GB of memory.

The models that were experimented with and evaluated are as follows:

³ <https://github.com/huggingface/transformers/tree/main/examples/pytorch>

⁴ https://huggingface.co/docs/trl/dpo_trainer

- **mT5++**: The state-of-the-art mT5-small model from the study of Kahla et al. (2022), fine-tuned using the AraSum corpus, and using the XL-Sum Arabic corpus.
- **’mT5++’ + RLHF**: The fine-tuned mT5++ model is further fine-tuned with the RLHF approach, where a reward model is trained from human feedback, followed by Proximal Policy Optimization (PPO) for policy refinement on the AraSum corpus, and the XL-Sum corpus.
- **’mT5++’ + DPO**: The fine-tuned mT5++ model is further fine-tuned with the Direct Preference Optimization (DPO) approach using the human-evaluated dataset.
- **Llama 2**: The Llama 2 model with 7 billion parameters, supervised fine-tuned (SFT) using the AraSum corpus, and the XL-Sum Arabic corpus.
- **Llama 2 + RLHF**: The SFT Llama 2 model fine-tuned with the RLHF approach using the development set of AraSum and XL-Sum Arabic corpus, and the fine-tuned XLM-RoBERTa-large reward model.
- **Llama 2 + DPO**: The SFT Llama 2 model is fine-tuned with the Direct Preference Optimization approach using the human-evaluated dataset.

We evaluated the system output using the ROUGE-N and ROUGE-L metrics. ROUGE-1 and ROUGE-2 assess the overlap of word unigrams and bigrams, respectively, while ROUGE-L measures the overlap of the longest common subsequence between two texts. ROUGE-L sum extends this by applying the ROUGE-L calculation at the sentence level and then aggregating the results for the final score.

It should be noted that the specific ROUGE scores presented here were calculated using the latest version of the ROUGE (Lin, 2004) library that was implemented by Hugging Face⁵, with the following setting: use_stemmer=True. Using the latest version, we were unable to reproduce the original values published in Kahla et al. (2022) and Hasan et al. (2021). We also tried using the implementation of XL-Sum⁶ and the original implementation by Google⁷, but neither worked. The main objective is to demonstrate the enhanced performance resulting from our experiments; therefore, we used the values from the latest version of the Hugging Face Evaluate library. For better readability, we used the ROUGE * 100 values. For better transparency, the old and new ROUGE values for the mT5++ models are presented as follows (in the order: ROUGE-1/ROUGE-2/ROUGE-L):

- old values of mT5++ Arasum Test Set: 33.172/13.914/24.782
- new values of mt5++ Arasum Test Set: 4.560/0.344/4.509
- old values of mT5++ XL-Sum Test Set: 29.128/11.049/24.070
- new values of mt5++ XL-Sum Test Set: 1.489/0.043/1.483

As with other fine-tuning experiments, we needed to determine the optimal number of epochs. Figure 2 shows experiments conducted with different epoch

⁵ <https://huggingface.co/docs/evaluate/index>

⁶ https://github.com/csebuetnlp/xl-sum/tree/master/multilingual_rouge_scoring

⁷ <https://github.com/google-research/google-research/tree/master/rouge>

counts. In both the RLHF and DPO experiments, optimal performance was observed across three epochs: 0.3, 0.6, and 1, with epoch 1 yielding the best results.

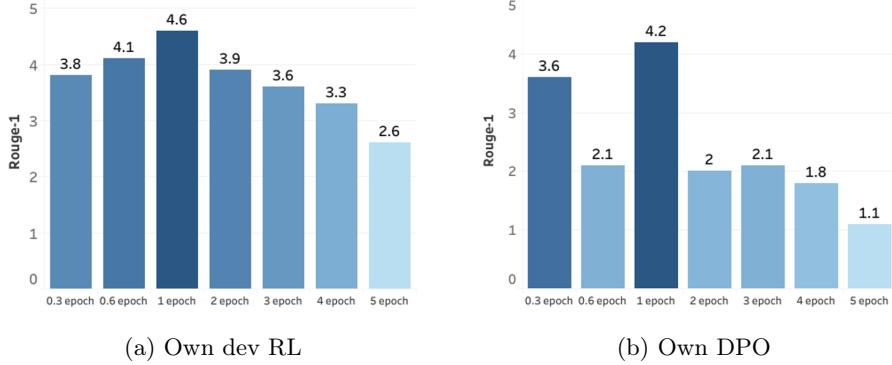


Fig. 2: Performance of ROUGE-1 across Epochs variations. In both datasets, we can see a performance improvement when the epoch is 1.

Model	ROUGE-1	ROUGE-2	ROUGE-L	ROUGE-L sum
AraSum Test Set				
mT5++	4.560	0.344	4.509	4.537
'mT5++' + RLHF	3.464	0.245	3.435	3.444
'mT5++' + DPO	2.813	0.248	2.819	0.543
Llama 2	4.636	0.414	4.618	4.616
Llama 2 + RLHF	4.947	0.486	4.957	4.949
Llama 2 + DPO	4.719	0.470	4.659	4.664
XL-Sum Arabic Test Set				
mT5++	1.489	0.043	1.483	1.481
'mT5++' + RLHF	0.633	0.014	0.626	0.635
'mT5++' + DPO	0.534	0.029	0.540	0.543
Llama 2	2.241	0.102	2.225	2.223
Llama 2 + RLHF	2.344	0.104	2.339	2.325
Llama 2 + DPO	2.447	0.112	2.440	2.431

Table 2: ROUGE scores on the AraSum, and the XL-Sum Arabic test sets.

Table 2 presents the experimental results. The ROUGE scores reveal several significant insights across the models and fine-tuning approaches. Llama 2, with

its 7 billion parameters, significantly outperforms the mT5++ model across all metrics, demonstrating Llama 2’s superior capabilities. Both RLHF and DPO contribute to improved performance, with Llama 2 + RLHF achieving the highest scores on the AraSum dataset, indicating a substantial boost in performance. In contrast, the ‘mT5++’ + RLHF model performs the worst across all metrics, suggesting that mT5 struggles to benefit from the RLHF approach. Additionally, the ROUGE scores for XL-Sum are significantly lower compared to AraSum across all models, highlighting the strength and quality of the dataset AraSum in achieving better summarization performance.

6 Conclusion

In this paper, we applied Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) to the task of abstractive text summarization for the Arabic language. By fine-tuning the state-of-the-art LLaMA 2 model, we observed a remarkable enhancement in summarization quality, particularly when RLHF was used with the AraSum dataset. The performance improvements highlight the strength of LLaMA 2, especially when combined with RLHF on our dataset. Moreover, the AraSum corpus played a crucial role in achieving superior results, consistently surpassing models fine-tuned on the XL-Sum dataset. This study demonstrates that advanced techniques like RLHF and DPO, in combination with a robust dataset such as AraSum and a highly capable large language model such as LLaMA 2, can significantly elevate the quality of abstractive Arabic text summarization. While our focus was on Arabic, the techniques and insights presented in this study are inherently language-agnostic. They have the potential to be applied to other languages, particularly those with complex morphological and syntactic features, making this work relevant for broader multilingual NLP tasks. In addition, we are committed to publicly releasing the AraRLHF and AraDPO datasets to promote reproducibility and further advancements in Arabic NLP.

In the meantime, the Llama 3 models have been released. We aim to continue our experiments with these new models and anticipate achieving further advancements in performance through their utilization.

References

Al-Maleh, M., Desouki, S.: Arabic text summarization using deep learning approach. *Journal of Big Data* 7, 1–17 (2020)

Antoun, W., Baly, F., Hajj, H.: AraBERT: Transformer-based model for Arabic language understanding. In: Al-Khalifa, H., Magdy, W., Darwish, K., Elsayed, T., Mubarak, H. (eds.) *Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language Detection*. pp. 9–15. European Language Resource Association, Marseille, France (May 2020), <https://aclanthology.org/2020.osact-1.2>

Azmi, A.M., Altmami, N.I.: An abstractive Arabic text summarizer with user controlled granularity. *Information Processing and Management* 54(6), 903–921 (2018), <https://www.sciencedirect.com/science/article/pii/S030645731730417X>

Böhm, F., Gao, Y., Meyer, C.M., Shapira, O., Dagan, I., Gurevych, I.: Better rewards yield better summaries: Learning to summarise without references. *arXiv preprint arXiv:1909.01214* (2019)

Casper, S., Davies, X., Shi, C., Gilbert, T.K., Scheurer, J., Rando, J., Freedman, R., Korbak, T., Lindner, D., Freire, P., et al.: Open problems and fundamental limitations of reinforcement learning from human feedback. *arXiv preprint arXiv:2307.15217* (2023)

Cho, W.S., Zhang, P., Zhang, Y., Li, X., Galley, M., Brockett, C., Wang, M., Gao, J.: Towards coherent and cohesive long-form text generation. *arXiv preprint arXiv:1811.00511* (2018)

Chouikhi, H., Alsuhaibani, M.: Deep transformer language models for Arabic text summarization: A comparison study. *Applied Sciences* 12(23) (2022), <https://www.mdpi.com/2076-3417/12/23/11944>

Christiano, P.F., Leike, J., Brown, T., Martic, M., Legg, S., Amodei, D.: Deep reinforcement learning from human preferences. *Advances in neural information processing systems* 30 (2017)

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L., Stoyanov, V.: Unsupervised cross-lingual representation learning at scale. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J. (eds.) *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*. pp. 8440–8451. Association for Computational Linguistics, Online (Jul 2020), <https://aclanthology.org/2020.acl-main.747>

Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*. pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (Jun 2019), <https://aclanthology.org/N19-1423>

Elmadani, K.N., Elgezouli, M., Showk, A.: Bert fine-tuning for Arabic text summarization. *ArXiv abs/2004.14135* (2020)

Hasan, T., Bhattacharjee, A., Islam, M.S., Mubashir, K., Li, Y.F., Kang, Y.B., Rahman, M.S., Shahriyar, R.: XL-sum: Large-scale multilingual abstractive summarization for 44 languages. In: *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021*. pp. 4693–4703. Association for Computational Linguistics, Online (Aug 2021), <https://aclanthology.org/2021.findings-acl.413>

Havrilla, A., Zhuravinskyi, M., Phung, D., Tiwari, A., Tow, J., Biderman, S., Anthony, Q., Castricato, L.: trlX: A framework for large scale reinforcement learning from human feedback. In: *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*. pp. 8578–8595.

Association for Computational Linguistics, Singapore (Dec 2023), <https://aclanthology.org/2023.emnlp-main.530>

Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., Amodei, D.: Reward learning from human preferences and demonstrations in Atari. *Advances in neural information processing systems* 31 (2018)

Jaques, N., Ghandeharioun, A., Shen, J.H., Ferguson, C., Lapedriza, À., Jones, N., Gu, S., Picard, R.W.: Way off-policy batch deep reinforcement learning of implicit human preferences in dialog. *CoRR* abs/1907.00456 (2019), <http://arxiv.org/abs/1907.00456>

Kahla, M., Novák, A., Yang, Z.G.: Fine-tuning and multilingual pre-training for abstractive summarization task for the Arabic language. *Annales Mathematicae et Informaticae* (2022), <https://ami.uni-eszterhazy.hu>

Kahla, M., Yang, Z.G., Novák, A.: Cross-lingual fine-tuning for abstractive Arabic text summarization. In: *Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)*. pp. 655–663. INCOMA Ltd., Held Online (Sep 2021), <https://aclanthology.org/2021.ranlp-main.74>

Kamal Eddine, M., Tomeh, N., Habash, N., Le Roux, J., Vazirgiannis, M.: AraBART: a pretrained Arabic sequence-to-sequence model for abstractive summarization. In: Bouamor, H., Al-Khalifa, H., Darwish, K., Rambow, O., Bougares, F., Abdelali, A., Tomeh, N., Khalifa, S., Zaghouani, W. (eds.) *Proceedings of the The Seventh Arabic Natural Language Processing Workshop (WANLP)*. pp. 31–42. Association for Computational Linguistics, Abu Dhabi, United Arab Emirates (Hybrid) (Dec 2022), <https://aclanthology.org/2022.wanlp-1.4>

Kreutzer, J., Khadivi, S., Matusov, E., Riezler, S.: Can neural machine translation be improved with user feedback? *arXiv preprint arXiv:1804.05958* (2018)

Lawrence, C., Riezler, S.: Improving a neural semantic parser by counterfactual learning from human bandit feedback. *arXiv preprint arXiv:1805.01252* (2018)

Lin, C.Y.: ROUGE: A package for automatic evaluation of summaries. In: *Text Summarization Branches Out*. pp. 74–81. Association for Computational Linguistics, Barcelona, Spain (Jul 2004), <https://www.aclweb.org/anthology/W04-1013>

Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim, C., Hesse, C., Jain, S., Kosaraju, V., Saunders, W., et al.: Webgpt: Browser-assisted question-answering with human feedback. *arXiv preprint arXiv:2112.09332* (2021)

Nallapati, R., Zhou, B., Ma, M.: Classify or select: Neural architectures for extractive document summarization. *arXiv preprint arXiv:1611.04244* (2016)

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., Lowe, R.: Training language models to follow instructions with human feedback. In: *Proceedings of the 36th International Conference on Neural Information Processing Systems*. pp. 27730–27744. NIPS ’22, Curran Associates Inc., Red Hook, NY, USA (2024)

Perez, E., Karamcheti, S., Fergus, R., Weston, J., Kiela, D., Cho, K.: Finding generalizable evidence by learning to convince q&a models. arXiv preprint arXiv:1909.05863 (2019)

Rafailov, R., Sharma, A., Mitchell, E., Manning, C.D., Ermon, S., Finn, C.: Direct preference optimization: Your language model is secretly a reward model. In: Thirty-seventh Conference on Neural Information Processing Systems (2023), <https://arxiv.org/abs/2305.18290>

See, A., Liu, P.J., Manning, C.D.: Get to the point: Summarization with pointer-generator networks. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). pp. 1073–1083. Association for Computational Linguistics, Vancouver, Canada (Jul 2017), <https://www.aclweb.org/anthology/P17-1099>

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D.M., Lowe, R., Voss, C., Radford, A., Amodei, D., Christiano, P.F.: Learning to summarize from human feedback. CoRR abs/2009.01325 (2020), <https://arxiv.org/abs/2009.01325>

Tang, Y., Tran, C., Li, X., Chen, P.J., Goyal, N., Chaudhary, V., Gu, J., Fan, A.: Multilingual translation with extensible multilingual pretraining and fine-tuning (2020), <https://arxiv.org/abs/2008.00401>

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X., Guestrin, C., Liang, P., Hashimoto, T.B.: Stanford Alpaca: An Instruction-following LLaMA model (2023), https://github.com/tatsu-lab/stanford_alpaca

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E., Azhar, F., et al.: Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023a)

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open foundation and fine-tuned chat models (2023b), <https://arxiv.org/abs/2307.09288>

Wu, J., Ouyang, L., Ziegler, D.M., Stiennon, N., Lowe, R., Leike, J., Christiano, P.F.: Recursively summarizing books with human feedback. CoRR abs/2109.10862 (2021), <https://arxiv.org/abs/2109.10862>

Xue, L., Constant, N., Roberts, A., Kale, M., Al-Rfou, R., Siddhant, A., Barua, A., Raffel, C.: mT5: A massively multilingual pre-trained text-to-text transformer. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. pp. 483–498. Association for Computational Linguistics, Online (Jun 2021), <https://aclanthology.org/2021.naacl-main.41>

Yang, Z.G., Agócs, Á., Kusper, G., Váradi, T.: Abstractive text summarization for Hungarian. *Annales Mathematicae et Informaticae* 53, 299–316 (2021)

Yang, Z.G., Laki, L.J.: Enhancing machine translation with quality estimation and reinforcement learning. *Annales Mathematicae et Informaticae* 58, 180–190 (2023)

Zhang, X., Lapata, M., Wei, F., Zhou, M.: Neural latent extractive document summarization. arXiv preprint arXiv:1808.07187 (2018)

Zhou, W., Xu, K.: Learning to compare for better training and evaluation of open domain natural language generation models. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34, pp. 9717–9724 (2020)

Ziegler, D.M., Stiennon, N., Wu, J., Brown, T.B., Radford, A., Amodei, D., Christiano, P., Irving, G.: Fine-tuning language models from human preferences. arXiv preprint arXiv:1909.08593 (2019)