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Abstract. This paper deals with the following logarithmic Schrodinger-Bopp-Podolsky
system

—Au+V(x)u—¢u=ulogu®? inR3,

—Ap + A?¢p = 4mru? in R3,
where V(x) € C(R3 R). By using the variational method developed by Szulkin for
the functional which is the sum of a smooth and a convex lower semicontinuous term,
we study the properties of the solutions for the above system under different potential
conditions. When the potential is coercive, we discuss the existence of a ground state

solution. Moreover, we also consider the cases where V(x) is periodic or asymptotically
periodic, and obtain a ground state solution in each scenario, respectively.
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1 Introduction and main results

In the past few decades, the following nonlinear Schrodinger—-Bopp-Podolsky system

(1.1)

—Au+V(x)u+Apu = f(u) inR3,
—Ap + a*> AP = drtu® in R,

where A, 2 € R are parameters, has been studied by many researchers. This system is closely
related to the Bopp-Podolsky electromagnetic theory and arises when coupling a Schrodinger
field = (¢, x) with its electromagnetic field in the Bopp-Podolsky electromagnetic theory.
Among them, the Bopp-Podolsky theory is called a second-order gauge theory of electromag-
netic fields, which was established by Bopp [3] and later developed by Podolsky [22] to solve
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the so-called infinity problem in the classical Maxwell theory. From the viewpoint of electro-
magnetic fields, the Bopp—Podolsky theory can be explained as an effective theory for short
distances, while for large distances it is experimentally indistinguishable from the Maxwell
theory (see [9]).

To our knowledge, d’Avenia and Siciliano in [7] first proved the existence and non-existence
of nontrivial solutions for system (1.1) with constant potential via using the variational method
and splitting lemma, where the nonlinear term is denoted as f(u) = |u|P~2u. Moreover, in
the radial case, they found that solutions tend to those of the classical Schrodinger-Poisson
system as a2 — 0. In [13], Li, Pucci and Tang generalized the existing results for system (1.1) to
the critical case and used the Pohozaev-Nehari manifold method to divide the equation into
two cases, the constant potential and the asymptotic constant potential, proving that there is
a ground state solution when the nonlinear term increases critically. Then in [4], the authors
improved the nonlinear term in [13] to a general nonlinear term, and adopted some new an-
alytical techniques and new inequalities to prove the existence of solutions in different cases.
Yang, Chen and Liu [27] applied a cut-off function, the mountain pass theorem and Moser
iteration to prove the existence of nontrivial solution for system (1.1) with critical growth.
Zhu, Chen and Chen [30] studied the existence of different solutions for system (1.1) under
nonlinearity effects.

Later, Jia, Li and Chen [12] established the existence of ground state solutions for nonau-
tonomous Schrodinger-Bopp-Podolsky system. Liu and Chen [18] studied the existence,
nonexistence and asymptotic behavior of ground state solutions for problem (1.1) with critical
Sobolev exponent. Peng [20] proved the existence and multiplicity of solutions for the system
(1.1). Zhang [28] investigated the existence of sign-changing solutions for system (1.1) with
general nonlinearity. Yang, Yuan and Liu [26] were concerned with the existence of ground
states for a nonlinear Schrodinger-Bopp-Podolsky system with asymptotically periodic po-
tentials. Li and Zhang [14] found the existence of normalized solution for the system (1.1). For
more information on the results of a system like (1.1), the readers can refer to [1,5,10,19,29]
and the references therein.

Recently, the Schrédinger problem with logarithmic terms given by

0P
e = —&AD + W(x)® — Plog |®>, N >3, (1.2)
where ®: [0, +00) x RN — C, has also received extensive attention due to its physical influ-
ence, such as quantum mechanics, quantum optics, nuclear physics, effective quantum, and
Bose-Einstein condensation (see [31]). The standing wave solutions for problem (1.2) have the
ansatz form ®(t, x) = u(x)e !¢, which leads to the following equation

—&2Au + V(x)u = ulog u?, inRY, (1.3)

where V(x) = W(x) —w and w € R. Its associated energy functional is as follows

Je(u) = ;/]RN (| Vul* + (V(x) + 1)u?) dx — % /]RN u?log u® dx. (1.4)

From a mathematical point of view, problem like (1.3) is very interesting because it is not
like the general Schrédinger equation whose energy functional is C! class, while the energy
functional J;(u) of the logarithmic Schrédinger equation is non-smooth. Therefore, it cannot
be solved by the general critical point theory, and new technical means must be employed for



Ground state solutions for the logarithmic Schrodinger—Bopp—Podolsky system 3

research, which brings many difficulties to the research process. In fact, there have been some
results in this direction.

In [6], d’Avenia, Montefusco and Squassina used the non-smooth critical point theory to
demonstrate the existence of infinitely many weak solutions for the logarithmic Schrodinger
equation (1.3) as ¢ = 1 and V(x) = 1. Furthermore, they have proven that there exists a unique
positive solution that is radially symmetric and nondegenerate. In [8], d’Avenia, Squassina
and Zenari adopted the same way to show the existence of infinitely many solutions of a
fractional Schrodinger equation with logarithmic nonlinearity.

Squassina and Szulkin [23] combined the method of the minimax principles for lower
semicontinuous functionals proposed by Szulkin [24] to study the following problem

—Au+V(x)u = Q(x)ulogu?, inRV, (1.5)
where V,Q: RN — R are 1-periodic continuous functions for x verifying

i x) >0 d in(V+Q)(x) > 0.
min Q(x) and - min (V' +Q)(x)
As a consequence, they obtained the existence of infinitely many geometrically distinct so-
lutions for problem (1.5). In [11], Ji and Szulkin, inspired by [23], discussed the existence
of multiple solutions and a ground state solution for equation (1.3), where ¢ = 1 and the
potential V(x) satisfies

V(x) eC (IRN,]R>, lim V(x)=Ve and Ve +1€ (0,+0d)].
|x\—)+oo
In the recent paper [2], Alves and de Morais Filho investigated the existence of positive
solutions for the logarithmic elliptic equation (1.3). By using the variational method developed
by Szulkin, they got the existence and concentration of solutions as ¢ — 0, and they also
considered the cases when the potential V' (x) is periodic or asymptotically periodic.
In particular, Peng and Jia [21] studied the logarithmic Schrodinger-Bopp—Podolsky sys-
tem as follows
—&2Au+ V(x)u — ¢u = ulogu® inR3, (1.6)
—2A¢ + e*A2p = 4T in R3, '

where V satisfies the following global condition:

(V)V(x) € C(R*R) and Ve:= lim V(x)> inf V(x) =V > -1
|x| =00 x€R3
Borrowing an idea from [2], they proved the existence and concentration behavior of positive
solution for equation (1.6).
Inspired by the above literatures, in this paper, we establish the existence of ground state
solutions for the following logarithmic Schrodinger—-Bopp-Podolsky system under different
potentials

(1.7)

—Au+V(x)u —¢u=ulogu?* inR>
—Ap + A%¢p = 4rru? in RS,

where V(x) € C (R R) satisfies the following global conditions:

(V1) V(x) is coercive and —1 < Vp = inf,cgs V(x).
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(Va) V(x) is a continuous Z3-periodic function, i.e.,

Vix+y)=V(x), YxeR,VyeZ® and —1<Vp= inf V().
xeR

(V3) V(x) is a continuous asymptotically periodic, that is, there is a continuous Z3-periodic
function V), such that

—1< Vp= inf V(x) < V(x) < Vp(x), forallx € R’

x€R3
and

|V(x) = Vp(x)| = 0 as |x| = 4o0.

We will use the Variational Method developed by Szulkin [24] to get our results. Compared
with previous papers, the problem we study is more complex due to the interaction between
logarithmic and non-local terms. To our knowledge, there is currently only one article [21]
in this direction, but in that literature the authors considered the case of asymptotic constant
potential, which is different from the problem we are studying. Therefore, it is necessary to
employ different methods to address our research question.

Definition 1.1. A weak solution for system (1.7) means a pair of (#,¢) € Ey x D satisfying
u?logu? € L' (R?) (ie., I(u) < 4+o0) and
/3(VuV§+ V(x)ul — pul)dx = /3 uflogu* dx, forany (€ Cg° (R?),
R R

/]R VgVidy + /]R ApAZdx = 41 /m @l dy, forany g €D,
where the definitions of I(u), Ey and D will be given in Sect. 2.
We derive the following results.
Theorem 1.2. Assume that the condition (V1) holds. Then, system (1.7) has one ground state solution.
Theorem 1.3. Assume that the condition (V) holds. Then, system (1.7) has one ground state solution.
Theorem 1.4. Assume that the condition (V3) holds. Then, system (1.7) has one ground state solution.

Remark 1.5. In this article, we just consider the case that V,, < +co in the condition (V3).
Indeed, the case V, = oo is simpler since the embedding Ey — LS(IR3) is compact for
s € [2,6), where Ey see Sect. 2. Moreover, we should note that Vj > —1 is assumed instead of
the general condition Vj > 0 because the nonlinear term we consider is logarithmic. In fact,
this question can be explained from (1.4), and readers can also refer to [25] for more details.

Remark 1.6. When considering the logarithmic equation, we will cite the useful logarithmic
Sobolev inequality found in [15]:

2
/]1{3 u?logu? dx < %HVHH% + (log [|u]|3 —3(1 4+ loga)) ||ull5, foralla>0.  (1.8)

Let us give a sketch of the proof of the results and explain the difficulties encountered in
the process of solving them.
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Due to the existence of the logarithmic term, the energy functional I(u) [see (2.3)] related
to system (1.7) may take the value +oco since there is a function u € H!(R®) such that
f]R3 u? log u% dx = —oo. Therefore, the functional I (u) is not of class C!, which makes it
impossible to be solved by the general critical point theory.

In order to find solutions of system (1.7), similar to [23], we will use a technical de-
composition of I(u) [see (2.4)]. In this case, we can apply the Mountain Pass Theorem
without (PS) condition for a functional that is the sum of a smooth and a convex lower
semicontinuous term, which was first mentioned in [2].

Because of the interaction between the logarithmic term and the non-local term, the
boundedness of (PS) sequences is more difficult to obtain than in [2], so we solve this
problem with the help of literature [21].

For the proof of Theorem 1.2, since the compactness can be directly obtained under the
coercive potential condition, we only need to prove the boundness of (PS) sequence and
combine the Mountain Pass Theorem without (PS) condition to complete the proof.

The lack of compactness makes the proofs of Theorems 1.3 and 1.4 more difficult. Un-
der the periodic potential condition, we still begin by decomposing the functional and
defining the Nehari manifold My [see (3.6)]. Subsequently, we derive the required con-
clusions via combining the Mountain Pass Theorem without (PS) condition. During this
process, it is necessary to refer to [17] to return to the solution of the original problem
[see Lemma 5.1]. The key steps in the proof involve verifying that the mountain pass
value is equal to the infimum on the Nehari manifold, i.e., ¢ = cy := inf,cr, I(u) [see
Lemma 3.7], and u,, — ug # 0. However, the difference of asymptotic periodic potential
is that the proof of u, — ug # 0 is obtained via comparing cy with cv, [see Lemma 6.2],
and other proofs are similar to the periodic potential case.

This paper is organized as follows. In Section 2, we recall some lemmas which we will use
in the paper. In Section 3, we introduce the Mountain Pass Theorem without (PS) condition.
In Section 4, we give the proof of Theorem 1.2. Subsequently, Theorems 1.3 and 1.4 will be
proved in Sections 5 and 6, respectively.

Throughout this paper, we use the following notations:

L$(R?) (2 < s < o0) denotes the Lebesgue space with the norm [Ju||, = ( [s 1|’ dx)l/s;

B,(x) denotes the ball centered at x with radius 7;
C,C,C,Ci(i=1,2,...) denote positive constants possibly different in different places;
0,(1) denotes a real sequence with 0,(1) — 0 as n — +oo;

H} (R®) = {u € H' (R%) | u has a compact support }.

2 Preliminaries

In this section, we present the variational setting and give a special decomposition of the
functional I(u), which needs to be adjusted since I(x) may not be well defined in H!(RR?).
According to the research techniques in [23], we decompose I(u) into a sum of a C! functional
plus a convex lower semicontinuous functional.
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2.1 Variational setting

Let H!(IR®) denote the Sobolev space equipped with the norm

1
2

_ 2, .2
|u|lg = </]R3 (IVul> +u )dx) ,

and D2 (R%) = {u | u € L° (R%),Vu € L? (R®) } be endowed with the norm

1

2

Hunpl,z:(/ ]Vu|2dx> .
]R3

Let D be the completion of C7° (R?) with respect to the norm || - ||p induced by the scalar
product

(¢, ) = /R ,VoVidx + /R | ApAZdx.

Clearly, D is a Hilbert space continuously embedded into D'? (IR®) and consequently in
L% (R®). Moreover, the space D is continuously embedded in L* (R®) (see Lemma 3.1 in

[7]).

Next, we present the basic lemma.

Lemma 2.1 ([7, Lemma 3.2]). The space C{® (R?) is dense in
A= {p e D (R?): ap € [* (R?) ]

normed by / (¢, §)p and, therefore, D = A.

In view of the Riesz Theorem, for every fixed u € H 1 (IR3 ), there exists a unique solution
¢u € D of the second equation in (1.7), namely,

— AP+ A*¢ = drru?

and ¢, can be represented by

Pu = /IR . Wuz(y)dy- (2.1)
Then we have the following fundamental properties.

Lemma 2.2 ([7, Lemma 3.4] and [27, Lemma 2.2]). For u € H' (R3) \{0}, we have:

(1) ¢, > 0in R3;

(2) ¢u € L¥ (R¥) NCy (R?), Vs € (3, +00;

(3) Pu(gy) = Pul- +y), Yy € R

@ 19ullp < Cllulles o guti® dx < Cllulldys;

(5) if uy — win H' (R3®), then ¢y, — ¢y, in D;

(6) ifuy, — uin L% (R3), then ¢y, — ¢y in D and [g; Pu,u? dx — [ps puu® dx;
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(7) ¢y is the unique minimizer of the functional

1 1
X(9) = 7|Vl + 3813 — 47 [ guPdx, gD,

Now we introduce the working space,

Ey := {u € H' (R : / V(x)u? dx < +oo}
R3
with the norm ||u||y induced by the scalar product

(u,v)y, = /IRS (VuVo+ (V(x) + 1)uv) dx.

Note that Ey is a Hilbert space, and the embedding Ey < H' (IR®) is continuous.
For any (u,¢) € Ey x D, the associated energy functional of system (1.7) is given by

Stu,p) =5 [ (VuP+ (V) + D) d— 3 [ gl dv+ 1 [ |Vl dx

1 2
+16—7T/1R3|A4>| dx—i/wu log u? dx.

To avoid the difficulties caused by the strong uncertainty of the functional, we use the usual
reduction function procedure introduced in [7]. From this, we can obtain that the reduced
functional has the form as follows

(2.2)

I(1) == S (i, ) —2/ (IVul + (V(x) + 1)u?) dx
—i/msfpuu dx—E/IRSu loguzdx.

Remark 2.3. The following conclusions are equivalent:
(i) the pair (u,¢) € Ey x D is a critical point of S, namely, (u, ¢) is a solution of (1.7);

(ii) u is a critical point of I(u) and ¢ = ¢(u).

2.2 Decomposition of the functional I(u)
For 6 > 0 small, let us define the following functions:
0, s=0,

F(s) = { —1s%logs?, 0<|s|] <9,
—35? (log 62 +3) +25s| — 36%, |s| > 6

and

G(s) = 0, Is| <9,
| is2log (s2/62) +20|s| — 352 — 182, |s| > 4.

Then,
G(s) —F(s) = %52 logs®, Vs € R
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and the functional I : Ey — (—00, +0c0] may be denoted as
I(u) = P(u)+¥(u), uckEy, (24)

where

D) = ;/IR (VP + (V(x) + 1)) dx—i'/R3¢uu2 dx— [ G(u) dx

and

V(1) = / F(u) dx.
R3
As proven in [11], we can list some properties of F and G as follows:
e F,GeCY{RR).

e If § > 0 is fixed and small enough, F is a nonnegative, convex, even function and
F'(s)s >0, for all s € R.

e For every fixed p € (2,6), there exists C > 0 such that for any s € R,

1G'(s)| < ClsP . (2.5)

Therefore, referring to [11], we can get that ¥ is nonnegative, convex and lower semicontinu-
ous, and @ € C! (Ev,R). Next, we will review some definitions and results of convex analysis
that first appeared in [24].

Definition 2.4. Let E be a Banach space, E’ be the dual space of E and (-,-) be the duality
pairing between E and E’. Let I : E — R be a functional and I(u) = ®(u) + ¥(u), where
@ € CY(E,R) and ¥ is convex and lower semicontinuous. Then the following results are
given:

(i) The set D(I) := {u € E: I(u) < +o0} is called the effective domain of I.
(ii) The sub-differential 9I(u) of the functional I at a point u € E is the following set
{weE :(P'(u),v—u)+¥(v)—¥(u) > (wv—u), VoeE}.
(iii) u € E is a critical point of I such that u € D(I) and 0 € 9I(u), i.e.,
(@' (u),v—u)y+¥()—¥(u)>0 VoekE.

(iv) A Palais-Smale sequence at level c for I is a sequence {u,} C E such that I (u,) — ¢ and
there is a numerical sequence 0, — 0" with

(D (), v —ttn) +¥(v) =¥ (p) > =0y ||0—uyl|, VoveE. (2.6)

(v) The functional I satisfies the Palais-Smale condition at level ¢ ((PS). condition, for short)
if each Palais—Smale sequence of I has a convergent subsequence in E.
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To further advance the analysis, for any u € D(I), we define I'(u) : H} (R*) — R given by
/ - / / 1 3
(I'(w),z) = (@' (u),z) + /IR3F (u)z dx, Vz € H; (R°)

and
|1 (u)]| := sup {<I’(u),z> 1z € H! (R?) with ||z]|y < 1}.

If [|[I'(u)]| < +oo, then I'(1) may be extended to a bounded operator in Ey, and it can also be
considered as an element of EJ,.

From Lemma 3.3 of reference [21], we state some useful results that can help us solve the
considered problem.

Lemma 2.5. Assume that I(u) satisfies (2.4). Then
(i) if u € D (I) is a critical point of I, then for any v € Ey,
(@' (u),v—u)y+¥(v)—¥(u) >0,

namely,
/Vqu—udx+/ x)+1)u v—udx—/ ¢puu(v —u) dx
+/ dx—/ F(u)dx > /3G’(u)(v—u)dx;
R

(ii) for every u € D (I) such that ||I'(u)|| < +oco, we have dI(u) # @, i.e., there is w € E},, which
is denoted by w = I'(u), such that for any v € Ey,

@0 o [ o n

(iti) if u € D (I) is a critical point of I, then (u, ¢y is one solution of system (1.7);
(iv) if {un} C Ev is a Palais-Smale sequence, then for any z € H} (R3),

(I (un),2) = ou(D) 2]l v;

(v) if A'is a bounded domain with regular boundary, then ¥ (and hence 1) is of class C in H'(A).
Precisely, for any u € H'(A), the functional

¥(u) = / F(u)dx
A
belongs to C' (H'(A),R).
According to the above proprieties, we can directly get the following consequences.
Lemma 2.6. If u € D(I) and ||I'(u)|| < 400, then F'(u)u € L*(IR%), where I satisfies (2.4).

Proof. This proof process relies on Lemma 2.5-(ii) and (v), and for more details, readers can
refer to the Lemma 2.1 in [2]. For brevity, we will omit the specifics here. O

In what follows, for each u € D(I), we can set the functional I'(#) : Ey — R given by
I'(u)u = /3 (]Vu\z + (V(x) +1) u? — pyu® — G’(u)u) dx + / . F'(u)u dx (2.7)
R R
= /]123 <|Vu|‘2 + V(x)u? - ([)uuz) dx — /]R3 u?log u? dx. (2.8)
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3 Mountain pass theorem without (PS) condition

In this section, we will introduce an abstract theorem for the functional of the type I(u) =
®(u) + ¥ (u), where @ € C! and ¥ is convex and lower semicontinuous. This method was
proposed by Alves and de Morais Filho [2] under the influence of Szulkin [24].

Proposition 3.1 ([2]). Let E be a Banach space and I: E — (—o0,+00| be a functional such that:

(i) I(u) = ®&(u) + ¥(u), where ®(u) € CY(E,R), and ¥: E — (—o0,+00] is convex, lower
semicontinuous and ¥ (u) # +oo;

(i)) 1(0) = 0 and I’aBp(o) > w, for some p, & > 0;
(iii) I(e) <0, for some e & B,(0).
Then for fixed € > 0, there is u, € E satisfying

(D (ue),w—ue) +¥(w) =¥ (ue) > =3¢ ||w—u|, VwekE

and

I(ug) € [c—gc+e,
where

¢:= inf max I(~(t))
and

I'={y e C([0,1],E) : 7(0) = 0,I(7(1)) < 0}.

Corollary 3.2. From Proposition 3.1, it is clear that there exists a (PS) sequence {u,} C E for I,
namely, I (u,) — c and

(D (), w—tp) +¥(w) =¥ (up) > =0y ||lw—uyl|, VwekE
with o, — 07

In the sequel, we will apply Proposition 3.1 and Corollary 3.2 to obtain our results. The
most crucial point is to prove that the (PS) sequence has a convergent subsequence. First, we
prove that I possesses the Mountain Pass Geometry.

Lemma 3.3. Assume that (V;) holds, i = 1,2,3. Then
(i) there exist by, ro > 0 such that I(u) > by with ||u||y = ro;
(ii) there exists & € R®\ B,,(0) with ||&||v > ro such that 1(¢) < 0.

Proof. (i) It is clear that I(0) = 0. According to (2.4) and (2.5) for p € (2,6), together with
F > 0 and Lemma 2.2-(4), we get

1
I(u) = S |[ully, = Cillully = Callully, = bo >0

for some by > 0 and ||u||y = r¢ small enough.
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(ii) First fix u € D (I) \{0} and t > 0, then according to (2.3) and Lemma 2.2-(1), one can
conclude

t2 1
I(tu) < 5 [lullf - /le u?log (|tuf?) dx

1
2 1 2 3. 2 _
=t <I(u)+4/1Rscpuu dx logt/IRSu dx) — —o00,

as t — +oo. Choosing ¢ = t,u with [|é|]ly > ry for £, > 0 large enough, then we obtain
I(é) < 0. O

Remark 3.4. According to Proposition 3.1 and Lemma 3.3, there exists a (PS) sequence {u,} C
Ey of I(u) at the level ¢ > 0, where

-— inf I(y(t 3.1
¢ := inf max (v(t)) (3.1)

and
I={yeC(01,Ev):7(0) = 0,7(1) = &}.

Lemma 3.5. Assume that (V;) holds, i = 1,2,3. If {u,} C Ey is a (PS) sequence of I(u) at the level
c, then {u,} is bounded in Ey, where c is defined in (3.1).

Proof. By (2.3) and (2.8), for some C > 0, we deduce

1
/}RSu% dx+§/]Rs¢””u% dx =21 (uy) — I' (un) uy

=2c+04(1) + 0, (1) ||unlly
< C+o0n(1) [Junlly -

Consequently,
[unl3 < C+0a(1) [l - (3.2)

Next, we will use the logarithmic Sobolev inequality (1.8) for a convenient small 2 > 0. Fixing
2

L — 1, it follows from (1.8) and (3.2) that

T
/ ulogu? dx<1]|Vu 12+ [ log ||un]|z =3[ 1+1o \/—4 [T lEs
; Hn 108ty AX = o nll2 & llUnll2 &\ = nll2

2 2 2
|V l3 + Cr (log a3 +1) llal3

IA
e e

(3.3)

< 7 Vi3 + €1 (log (C + 04 (1) [[unllyy) +1) (C + 0u (1) tta]l)

< 7 IVinl3 + Co (log [lutully) llually

4
Using the fact that given 6 € (0,1) there is A > 0 satisfying
togt| < A (1+[¢), t>0,

we obtain, together with (3.3), the inequalities below

1 ~
[, u2tog 2 dx < 2 [Vl +C (1+ ually ) -
3.4
1 2, A 1+0
< S IVmal3+C A+ )
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for 6 € (0,1) and n large enough. Then by (3.4), we have

1
¢+ 0, (1) |lunlly = I (un) — ZI/ (un) un

1
> 5 (Il = [ witogc ar)

1+6
> C' (flunlly = (1 lluall) )

for some C’ > 0 independent of n. From the above discussion, we get that {u,} is bounded in
Ey. O

Remark 3.6. According to Lemma 3.3, we consider the fiber mapping t — f(t) := I(tu) given
by
tZ
f) == | (IVuP+ (V(x) +1)u?) dx

2w (3.5)

t t2
— Z/]Rs ¢yu® dx — E/ms u?log |tu* dx.

Then we can easily infer that f(t) has a maximum value at the unique critical point t, > 0.
Indeed, from the expression of f(t) we can observe

t2

£ 2
2 2 2 2 2 2
2 Jeot log |tu|” dx = 5 /leu log |u|” dx + 5 logt /]Ra]u\ dx.

Hence, for given u € Ey, we can denote f(t) as
f(t) := C1t? — Cot* — C3t?log 1,

correspondingly,
f(t) = C4t — Cst® — Cet log t>
= 1g(t),

where
g(t) = C4 - C5t2 - C6 log tz.

From the expression of g, we know that ¢ is a monotonically decreasing function for t > 0,
and g has the unique zero point t,. In other words, g(t) > 0 for t € (0,t,) and g(t) < 0
for t € (t,,+o0). Hence, it’s easy to conclude f'(t) > 0 for t € (0,t,) and f'(t) < O for
t € (ty, +00), i.e., f achieves a positive maximum at the unique critical point f,, > 0.

Next, we define

My ={ueD()\{0} | I'(w)u=0}. (3.6)

In fact, for any u € D (I) \{0}, every ray {tu | t > 0} intersects the set (3.6) at exactly the
unique point t,u. In this way, t, = 1, if and only if, u € My.

Lemma 3.7. If ¢ denotes the mountain level associated with I(u), by Remark 3.6, it is possible to prove
the equality
0<c=cy,

where cy := infy,cpq, I(10).
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Proof. Since u € My, by Lemma 3.3 and Remark 3.6, one has

0<c< r?jloxl(tu) = I(tyu) = I(u),

namely,

c < inf I(u).
ue My

Next, we need to prove the reverse inequality. Let {u,} C Ey be a (PS). sequence of I(u),
then Lemma 3.5 implies that {u, } is bounded in Ey. Now, we claim that

[tnl, = 0. (3.7)

In fact, according to the contradictory argument and interpolation inequality, we have that
uy — 01in LP(IR®), Vp € [2,6). Then, by (2.5) we get

/3G’(un)un dx§C/3\un]p dx — 0.
R R

On the other hand, from (2.7), Lemma 2.2-(4) and the fact that F'(s)s > 0, we obtain

it |2 + /W F' (14 tty dx = I' (10 )ty + /Rs G (14 thy dx + /W P12 dx
=o0,(1),

from where it follows that u,, — 0 in Ey and F'(u,)u, — 0 in L'(IR®) as n — +oco. Further-
more, from the definition of F(s), we can directly calculate that 0 < F(s) < F'(s)s for all s € R.
Hence, F(u,) — 0in L!(IR®), and so, I(u,) — 0, which is contradictory to I(u,) — ¢ > 0. This
proves (3.7). Naturally, we may assume that there exist constants a4, b > 0 such that

0<a< |lunll, <b, VneN.

Moreover, by Remark 3.6, for every u, € Ey, we can let s, > 0 be such that s,,u,, € My. From
the definition of My, we can see

1
I (spuy) = I (syup) — EI/ (Snttn) Snlin, (3.8)
which means
s

4
2 2 Sy 2
E/Rs <|Vun| —|—(V(x)+1)un> dx — Z/]R3 Pu, u;, dx

s 2 2 S 2 Si 2
=5 Jeatn log [spuy|” dx = 2 e |un|” dx + % Jre $u, 1 dx,

namely,
/ <|Vun|2 + V(x)u%) dx — Zlogsn/ u dx
R? R? (3.9)
— /]1{3 u?logu? dx = &3 /]1{3 ¢y, 1> dx.
Recalling that {u,} is a bounded (PS). sequence of I(u), and based on (2.8), we have
I (un) uy = /]R3 <|Vun‘2 + V(x)uz - ([)uﬂu%> dx — /]R3 u? logu? dx (3.10)

= 0,(1).
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It follows from (3.9) and (3.10) that

on(1) = 2|[uy|*logs, + (2 — 1) /}RS P12 dx,

then combining (3.7) and Lemma 2.2-(4), we derive that s, — 1 as n — +oco. From this
information, we arrive at

inf I(u) < I(spun) —c asn — +oo.
ueMy

The proof has been completed. O

4 Proof of Theorem 1.2

Theorem 4.1 ([11]). Under the condition (Vy), Ey can be compactly embedded into L (R3), p €
[2,6).

Proof of Theorem 1.2. From Lemma 3.5, it is known that the sequence {u, } is bounded. Passing
to a subsequence, 1, — u in Ey for some u and by Theorem 4.1 with (3.7), we have u, = u # 0
in LP(R3) for p € [2,6). Then by the Holder inequality, combining Lemma 2.2-(4) and (2.5),
respectively, we can obtain the following conclusions

/]123 $u, n(u — 1) dx — 0, 4.1)

/]R3 G’ (un) (4 —uy) dx — 0. (4.2)

Since {u, } is the (PS) sequence, depending on Corollary 3.2 and taking w = u, we derive that
(D (tn),u—ty) +¥(u) =¥ (1n) > —0n |lu—unly,

namely,

/]R3 Vu,V(u—uy) dx—l—/IRS (V(x) 4+ 1) uy (u—uy) dx—/]R3 Gu, U (U — 1) dx
—/]RS G (1) (1t — tty) dx + ¥ (1) — ¥ (1) > —0p |1t — 1ty

equivalently,

(1,1,1,14—1,1,1>V—/IR3 G,y (1 — Uy) dx—/IR3 G’ (un) (u —uy) dx
() = ¥ () =~ ]

Hence, one has

lim ((un,u>v - H”nH%/) — lim </IR3 G, tn (U — Uy) dac—k/}RS G (un) (u— uy) dx)

n——+00 n—+0o0o

+ lm (¥(u) =¥ (u)) > 0.

n——+oo

Combining u,, — u in Ey with (4.1) and (4.2), the above inequality becomes
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T 2 o
Tim (Jlull} = llual}) + Tm (¥(u) =¥ (ua)) 20, (4.3)
namely,
ul|2 — Lm |jua]|3 +¥(u) — Lm ¥ (u,) > 0. (4.4)
n—s+o0 n—4-00

On the other hand, ¥ is lower semicontinuous, i.e., ¥ () < lim
(4.4), we deduce

nostoo T (1y), together with
. 2
[ullfy = Lm [fu,[fy > 0.
n——+oo

Then according to the weak lower semi-continuity of the norm ||u||% < lim,,_, ., [|us||3, we
have ||u,||,, = ||u||v, which implies 1, — u in Ey. Furthermore, by combining this result with
Lemma 3.7, we can conclude that I(u) = ¢ = cy, i.e., u is a ground state solution for equation
(1.7). The proof is completed. O]

5 Proof of Theorem 1.3

In this section, we give the proofs of Theorem 1.3. Since the defined manifold My lacks C?
regularity, we will adopt an indirect approach by borrowing the method from [17] to obtain
our results.

Lemma 5.1. Assume that (V;) holds, i = 2,3. If u € My and 1(u) = c, then u is a solution of
Eq.(1.7).

Proof. Suppose to the contrary, there exists u such that I(u) = ¢ and I'(#) # 0. Then there
exists 7 € C§° (R®) such that (I'(u),17) < —1. Choose a constant € € (0,1) small enough such
that for all |t —1| < eand || <€,

(I'(tu+on), 1) < —%. (5.1)

Define a cut-off function 0 < x < 1 such that x(t) = 1 for [t — 1| < § and x(f) = 0 for
|t —1| > e. For t > 0, we introduce a curve y(t) = tu for |t — 1| > € and y(t) = tu + ex(t)y
for |t — 1| < e. Clearly, ¥(t) is a continuous curve, and for |t — 1| < ¢, ||y(¢)|| > 0 holds when
€ small enough. Next, we claim I(y(t)) < ¢, for all t > 0. Indeed, if |t — 1| > ¢, together with
Remark 3.6, I(y(t)) = I(tu) < I(u) = c. If |t — 1] < €, then by Lemma 2.5-(v), the mapping
[0,€] 3 0 — I(tu+ ox(t)y) is of C'. Consequently, together with (5.1), there exists & € (0,¢€)
such that

I(tu+ex(t)y) = I(tu) + (I'(tu + ax(t)n), ex(t)n) < I(tu) — gx(t) <ec.

Let w(u) = (I'(u),u). By the definition of (t), we have w(y(1 —¢€)) = w((1 —€)u) > 0 and
w(y(l+€)) = w((1+€)u) < 0. Since the mapping t — w(y(t)) is continuous, there exists
Fe (1—¢1+e€) such that w (y(f)) = 0. Thus, v (f) € My and I (7 (f)) < ¢, which is a
contradiction. The proof is complete. O

Proof of Theorem 1.3. From Proposition 3.1, Corollary 3.2 and Lemma 3.3, there exists a (PS).
sequence {u,} of I(u) such that
I(un) —c
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and
(D (un), u—1up) +¥(u) =¥ (up) > —0y ||u—unl|,, VuekEy,

with 0, — 07. As in the previous section {u,} is a bounded sequence in Ey, then there is
ug € Ey, and a subsequence of {u,}, still denoted {u,}, such that

Uy — up in Ey, (5.2)
uy — up in Li (R%), (5.3)
Uy, — 1y a.e. in R3. (5.4)

Next, taking any test function 7 € C§°(IR?), from (2.5) and (5.2) together with Lemmas 2.2-(4)
and 2.5-(v), we have

0= lim (I'(un),7)

n——4oo

= lim [<”m’7>v_/]R3 Pu, Unl] der/]R3 F'(uy)n dx — /IR3 G (un)y dx}

n——+oo
= (o)~ [ o dx+ [ F(uo)y dx— [ G'(un)y dx
R3 R3 R3
= (I' (uo0) ,17),

which means that 1 is a weak solution to equation (1.7). To complete this proof of Theorem
1.3, the key is to prove that 1 # 0 in Ey. In fact, combined with (3.7), the Lions Concentration
Compactness Principle [16] implies that there are parameters r, f > 0, and a sequence {y,} C

73 such that
lim iy |* dx > B > 0.
n—-+oo BY (yn)

Now, setting v, (x) = uy (x + yu), {yn} C Z3, it follows that
/ |0, ] dx:/ it (x + y)|? dx:/ iy |* dx > b > 0. (5.5)
B(0) B(0) Br(yn) 2
Since V(x) satisfies (V>), there hold ||v,||,, = ||uxl|, and

I(v,) —¢c, I'(vy) =0, asn— +oo,

so {v,} is also a bounded (PS). sequence of I. Therefore, if vy denotes the weak limit of {v, }
in Ey, for some subsequence, we have that

v, — 19 in Ey, (5.6)
v, — vy ae. in R, (5.7)
v, — vy inL1(B,(0)), Vr>0 and g€ [1,6). (5.8)

From (5.8), we derive that

/ 00| dx2é>0,
B:(0) 2

which shows that vy # 0. Using the standard argument, one has I'(vo)y = 0, Vi € C° (R®),
i.e., v is a non trivial weak solution for equation (1.7).
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Further, because vy € My, it follows from (2.3), (2.8) and the Fatou lemma that

2¢ < 2I(vg) = 2I(vg) — I'(vg)vo
1
_ 2 L 2
_/][{300 dx+2/]R3¢vovo dx
1
< lim </ 02 dx—l—f/ Po, V2 dx>
n——+o0o R3 2 JRr3

—_— 1
- 2 1 2
S ﬂgl}:loo (A:& Un dx + 2 /;{3 (PUnUn dx )

= Tim (2I(vy) — I'(vn)0n) = 2,

n——+0o

that is, cy = ¢ = I(vp) and consequently, vy is a ground state solution of equation (1.7). O

6 Proof of Theorem 1.4

In this section, we modify some notations.
Consider the vector space H! (R%) endowed with the norm

1
2

g = o (1908 + () 1) ) e )

where V), is defined in (V3). By replacing V by V,, we have a periodic problem as in the
following problem

_ — by — 2 i R3
{ Au+ Vy(x)u — ¢pu = ulogu® in R’, 6.1)

—A¢ + N ¢ = drtu? in R.
The underlying energy functional I, : H' (R®) — (—oo, +o0] associated with problem (6.1)
can be defined as
I(u) = @p(u) + ¥(u), Vue H'(R%), (6.2)
where

D, (u) := ;/]123 <|Vu\2 + (Vp(x) +1) u2> dx — i /]R3 ¢uu® dx — /]R3 G(u) dx,

and
Y1) = ./le F(u) dx.

Remark 6.1. Note that we would like to point out that the proof of Lemma 3.7 is indepen-
dent of potential conditions. Therefore, in the case of asymptotically periodic potentials, the
following items are valid:

(i) if ¢ denotes the mountain level associated with I(u), we have

0<c=cy:= inf I(u), 6.3
= e i 1) ©

where My is defined in (3.6).
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(ii) If d denotes the mountain level associated with I, (1), we have that

0<d=cy,:= ug}&p I(u), (6.4)

where
M, = {u € D (1)\{0} : I)(u)u = o}.
Lemma 6.2. Assume that V(x) satisfies (V3). Then
(Z) cy < CV,-

(it) If I(un) — c € (0,cv,) and I'(un) — O, then u, — ug # 0 after passing to a subsequence, ug
is a critical point of I(u) and I(ug) < c.
Proof. (i) Similar to Remark 3.6, we know that for any u € M, one has I,(u) = max;-q I,(tu),
and there exists t, > 0 such that t,u € My and I(t,u) = max;~o I(tu). By (V3),

= inf I < I(t = I(t L(tu) =1 .
ev=Inf 1) < I(tyw) = maxl(tn) <maxly(tu) = L, (u)

Because of the arbitrariness of u, we get that cy < cy,.
(ii) As in Lemma 3.5, {u,} is bounded in Ey with the level c¢. Up to a subsequence, we can
assume that

U, — ug in Ey,

uy — up in L (R?),

U, — ug a.e.in R3.

Similar to the proof of Theorem 1.3, taking any ¢ € C§°(IR®), one has I'(up)p = 0, i.e., ug is a
weak solution of equation (1.7). By Fatou’s lemma, one has

1 1
1(u0) = 1) = 5 1'(wo)uto = [ e x5 [ guue® v

1
. 2 2
< tim ([ ey [ o ox) ¢
= lim (I(un) — 11/(7111)7/[71) =g
n—+0o 2

so, I(ug) < c. Next, we claim that 1y # 0 in Ey. Suppose, by contradiction, that u#y = 0. For
any € > 0, there exists R(e) > 0 such that

V(x) = V,(x)| <€, Vx| >R

Since 1, — up = 0in L2 _(R®) and {u,} is bounded, we obtain

L@ v dr< |

IV (x) = V,(2)] 2 dx-l—e/ 12 dx = o, (1),
Br(0)

R3\Bg(0)

which yields, as n — +o0

I(uy) — I, (un) = ;/11%3 |V(x) = Vy(x)| uj dx — 0.
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Using the Holder inequality and taking w with ||w|| = 1, we obtain, as n — 400
(1 (wa) = 1y () 0| < /RS IV (x) = Vy(2)] |ttu] [0] dx

<C (/]1{3 V(x) = Vy(x)| uj dx);

— 0.
In summary, we can immediately conclude
I(un) —c and I(u,) — 0,

namely, {u,} is a bounded (PS). sequence for I,. From (3.7) and Lions lemma [16], it follows
that there exist R, x > 0, {z,} C Z3 satisfying

/ \un\z dx >x >0, (6.6)
BR(Zn)

for all n € IN. Since u(x) = 0 for all x € R?, we have |z,| — +oc0. Taking wy(x) = un(x + z,),
then according to condition (V3), {w} is also a bounded (PS). sequence for I,. Therefore, we
can assume there exists wy € Ey such that w, — wp in Ey, w, — wp in L2 (R?) and w, — wo
a.e. in R3 up to a subsequence. By (6.6), we have

/ |wn|? dx:/ | dx >« >0,
Br(0) Br(zn)

so, wy # 0. Then, using the standard argument, we get that for any v € Cy° (]R3 ), I;, (wo)v =0,
i.e., wo is a nontrivial week solution of Eq. (6.1). Following the proof of Theorem 1.3, we know
that wy is a ground-state solution for equation (6.1), i.e.,

Cvp = Ip(wo). (67)

By repeating the method of (6.5), this inequality I,(wg) < c¢ holds. Therefore, together with
(6.7) and the fact that ¢ € (0, cy,), we obtain the following conclusions

Iy(wo) < ¢ <cy, = I(wo),
which is a contradiction. This completes the proof. O

Proof of Theorem 1.4. From Lemmas 3.3 and 3.5, there exists a bounded (PS) sequence {u,}
for I with the level ¢ € (0,cy,). By Lemma 6.2-(ii), we obtain a critical point uy # 0 of I such
that I(u) < c. So, we have I'(u)ug = 0, i.e., ug € My. Then, arguing again as in the periodic
case, it is possible to prove that u is a ground state solution for Eq.(1.7). This completes the
proof of Theorem 1.4. O
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