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Abstract. This paper deals with the following logarithmic Schrödinger–Bopp–Podolsky
system {

−∆u + V(x)u − ϕu = u log u2 in R3,
−∆ϕ + ∆2ϕ = 4πu2 in R3,

where V(x) ∈ C(R3, R). By using the variational method developed by Szulkin for
the functional which is the sum of a smooth and a convex lower semicontinuous term,
we study the properties of the solutions for the above system under different potential
conditions. When the potential is coercive, we discuss the existence of a ground state
solution. Moreover, we also consider the cases where V(x) is periodic or asymptotically
periodic, and obtain a ground state solution in each scenario, respectively.
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1 Introduction and main results

In the past few decades, the following nonlinear Schrödinger–Bopp–Podolsky system{
−∆u + V(x)u + λϕu = f (u) in R3,

−∆ϕ + a2∆2ϕ = 4πu2 in R3,
(1.1)

where λ, a ∈ R are parameters, has been studied by many researchers. This system is closely
related to the Bopp–Podolsky electromagnetic theory and arises when coupling a Schrödinger
field ψ = ψ(t, x) with its electromagnetic field in the Bopp–Podolsky electromagnetic theory.
Among them, the Bopp–Podolsky theory is called a second-order gauge theory of electromag-
netic fields, which was established by Bopp [3] and later developed by Podolsky [22] to solve
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the so-called infinity problem in the classical Maxwell theory. From the viewpoint of electro-
magnetic fields, the Bopp–Podolsky theory can be explained as an effective theory for short
distances, while for large distances it is experimentally indistinguishable from the Maxwell
theory (see [9]).

To our knowledge, d’Avenia and Siciliano in [7] first proved the existence and non-existence
of nontrivial solutions for system (1.1) with constant potential via using the variational method
and splitting lemma, where the nonlinear term is denoted as f (u) = |u|p−2u. Moreover, in
the radial case, they found that solutions tend to those of the classical Schrödinger–Poisson
system as a → 0. In [13], Li, Pucci and Tang generalized the existing results for system (1.1) to
the critical case and used the Pohožaev–Nehari manifold method to divide the equation into
two cases, the constant potential and the asymptotic constant potential, proving that there is
a ground state solution when the nonlinear term increases critically. Then in [4], the authors
improved the nonlinear term in [13] to a general nonlinear term, and adopted some new an-
alytical techniques and new inequalities to prove the existence of solutions in different cases.
Yang, Chen and Liu [27] applied a cut-off function, the mountain pass theorem and Moser
iteration to prove the existence of nontrivial solution for system (1.1) with critical growth.
Zhu, Chen and Chen [30] studied the existence of different solutions for system (1.1) under
nonlinearity effects.

Later, Jia, Li and Chen [12] established the existence of ground state solutions for nonau-
tonomous Schrödinger–Bopp–Podolsky system. Liu and Chen [18] studied the existence,
nonexistence and asymptotic behavior of ground state solutions for problem (1.1) with critical
Sobolev exponent. Peng [20] proved the existence and multiplicity of solutions for the system
(1.1). Zhang [28] investigated the existence of sign-changing solutions for system (1.1) with
general nonlinearity. Yang, Yuan and Liu [26] were concerned with the existence of ground
states for a nonlinear Schrödinger–Bopp–Podolsky system with asymptotically periodic po-
tentials. Li and Zhang [14] found the existence of normalized solution for the system (1.1). For
more information on the results of a system like (1.1), the readers can refer to [1, 5, 10, 19, 29]
and the references therein.

Recently, the Schrödinger problem with logarithmic terms given by

iε
∂Φ
∂t

= −ε2∆Φ + W(x)Φ − Φ log |Φ|2, N ≥ 3, (1.2)

where Φ : [0,+∞)× RN → C, has also received extensive attention due to its physical influ-
ence, such as quantum mechanics, quantum optics, nuclear physics, effective quantum, and
Bose–Einstein condensation (see [31]). The standing wave solutions for problem (1.2) have the
ansatz form Φ(t, x) = u(x)e−iωt/ε, which leads to the following equation

−ε2∆u + V(x)u = u log u2, in RN , (1.3)

where V(x) = W(x)− ω and ω ∈ R. Its associated energy functional is as follows

J̃ε(u) =
1
2

∫
RN

(
ε2|∇u|2 + (V(x) + 1)u2)dx − 1

2

∫
RN

u2 log u2 dx. (1.4)

From a mathematical point of view, problem like (1.3) is very interesting because it is not
like the general Schrödinger equation whose energy functional is C1 class, while the energy
functional J̃ε(u) of the logarithmic Schrödinger equation is non-smooth. Therefore, it cannot
be solved by the general critical point theory, and new technical means must be employed for
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research, which brings many difficulties to the research process. In fact, there have been some
results in this direction.

In [6], d’Avenia, Montefusco and Squassina used the non-smooth critical point theory to
demonstrate the existence of infinitely many weak solutions for the logarithmic Schrödinger
equation (1.3) as ε = 1 and V(x) = 1. Furthermore, they have proven that there exists a unique
positive solution that is radially symmetric and nondegenerate. In [8], d’Avenia, Squassina
and Zenari adopted the same way to show the existence of infinitely many solutions of a
fractional Schrödinger equation with logarithmic nonlinearity.

Squassina and Szulkin [23] combined the method of the minimax principles for lower
semicontinuous functionals proposed by Szulkin [24] to study the following problem

−∆u + V(x)u = Q(x)u log u2, in RN , (1.5)

where V, Q : RN → R are 1-periodic continuous functions for x verifying

min
x∈RN

Q(x) > 0 and min
x∈RN

(V + Q)(x) > 0.

As a consequence, they obtained the existence of infinitely many geometrically distinct so-
lutions for problem (1.5). In [11], Ji and Szulkin, inspired by [23], discussed the existence
of multiple solutions and a ground state solution for equation (1.3), where ε = 1 and the
potential V(x) satisfies

V(x) ∈ C
(

RN , R
)

, lim
|x|→+∞

V(x) = V∞ and V∞ + 1 ∈ (0,+∞].

In the recent paper [2], Alves and de Morais Filho investigated the existence of positive
solutions for the logarithmic elliptic equation (1.3). By using the variational method developed
by Szulkin, they got the existence and concentration of solutions as ε → 0, and they also
considered the cases when the potential V(x) is periodic or asymptotically periodic.

In particular, Peng and Jia [21] studied the logarithmic Schrödinger–Bopp–Podolsky sys-
tem as follows {

−ε2∆u + V(x)u − ϕu = u log u2 in R3,

−ε2∆ϕ + ε4∆2ϕ = 4πu2 in R3,
(1.6)

where V satisfies the following global condition:

(V)V(x) ∈ C
(
R3, R

)
and V∞ := lim

|x|→+∞
V(x) > inf

x∈R3
V(x) = V0 > −1.

Borrowing an idea from [2], they proved the existence and concentration behavior of positive
solution for equation (1.6).

Inspired by the above literatures, in this paper, we establish the existence of ground state
solutions for the following logarithmic Schrödinger–Bopp–Podolsky system under different
potentials {

−∆u + V(x)u − ϕu = u log u2 in R3,

−∆ϕ + ∆2ϕ = 4πu2 in R3,
(1.7)

where V(x) ∈ C
(
R3, R

)
satisfies the following global conditions:

(V1) V(x) is coercive and −1 < V0 = infx∈R3 V(x).
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(V2) V(x) is a continuous Z3-periodic function, i.e.,

V(x + y) = V(x), ∀x ∈ R3, ∀y ∈ Z3 and − 1 < V0 = inf
x∈R3

V(x).

(V3) V(x) is a continuous asymptotically periodic, that is, there is a continuous Z3-periodic
function Vp such that

−1 < V0 = inf
x∈R3

V(x) ≤ V(x) < Vp(x), for all x ∈ R3

and ∣∣V(x)− Vp(x)
∣∣→ 0 as |x| → +∞.

We will use the Variational Method developed by Szulkin [24] to get our results. Compared
with previous papers, the problem we study is more complex due to the interaction between
logarithmic and non-local terms. To our knowledge, there is currently only one article [21]
in this direction, but in that literature the authors considered the case of asymptotic constant
potential, which is different from the problem we are studying. Therefore, it is necessary to
employ different methods to address our research question.

Definition 1.1. A weak solution for system (1.7) means a pair of (u, ϕ) ∈ EV ×D satisfying
u2 log u2 ∈ L1 (R3) (i.e., I(u) < +∞) and∫

R3
(∇u∇ζ + V(x)uζ − ϕuζ)dx =

∫
R3

uζ log u2 dx, for any ζ ∈ C∞
0
(
R3) ,

∫
R3

∇ϕ∇ξdx +
∫

R3
∆ϕ∆ξdx = 4π

∫
R3

ξu2 dx, for any ξ ∈ D,

where the definitions of I(u), EV and D will be given in Sect. 2.

We derive the following results.

Theorem 1.2. Assume that the condition (V1) holds. Then, system (1.7) has one ground state solution.

Theorem 1.3. Assume that the condition (V2) holds. Then, system (1.7) has one ground state solution.

Theorem 1.4. Assume that the condition (V3) holds. Then, system (1.7) has one ground state solution.

Remark 1.5. In this article, we just consider the case that Vp < +∞ in the condition (V3).
Indeed, the case Vp = +∞ is simpler since the embedding EV ↪→ Ls(R3) is compact for
s ∈ [2, 6), where EV see Sect. 2. Moreover, we should note that V0 > −1 is assumed instead of
the general condition V0 > 0 because the nonlinear term we consider is logarithmic. In fact,
this question can be explained from (1.4), and readers can also refer to [25] for more details.

Remark 1.6. When considering the logarithmic equation, we will cite the useful logarithmic
Sobolev inequality found in [15]:

∫
R3

u2 log u2 dx ≤ a2

π
∥∇u∥2

2 +
(
log ∥u∥2

2 − 3(1 + log a)
)
∥u∥2

2 , for all a > 0. (1.8)

Let us give a sketch of the proof of the results and explain the difficulties encountered in
the process of solving them.
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• Due to the existence of the logarithmic term, the energy functional I(u) [see (2.3)] related
to system (1.7) may take the value +∞ since there is a function u ∈ H1(R3) such that∫

R3 u2 log u2 dx = −∞. Therefore, the functional I(u) is not of class C1, which makes it
impossible to be solved by the general critical point theory.

• In order to find solutions of system (1.7), similar to [23], we will use a technical de-
composition of I(u) [see (2.4)]. In this case, we can apply the Mountain Pass Theorem
without (PS) condition for a functional that is the sum of a smooth and a convex lower
semicontinuous term, which was first mentioned in [2].

• Because of the interaction between the logarithmic term and the non-local term, the
boundedness of (PS) sequences is more difficult to obtain than in [2], so we solve this
problem with the help of literature [21].

• For the proof of Theorem 1.2, since the compactness can be directly obtained under the
coercive potential condition, we only need to prove the boundness of (PS) sequence and
combine the Mountain Pass Theorem without (PS) condition to complete the proof.

• The lack of compactness makes the proofs of Theorems 1.3 and 1.4 more difficult. Un-
der the periodic potential condition, we still begin by decomposing the functional and
defining the Nehari manifold MV [see (3.6)]. Subsequently, we derive the required con-
clusions via combining the Mountain Pass Theorem without (PS) condition. During this
process, it is necessary to refer to [17] to return to the solution of the original problem
[see Lemma 5.1]. The key steps in the proof involve verifying that the mountain pass
value is equal to the infimum on the Nehari manifold, i.e., c = cV := infu∈MV I(u) [see
Lemma 3.7], and un ⇀ u0 ̸= 0. However, the difference of asymptotic periodic potential
is that the proof of un ⇀ u0 ̸= 0 is obtained via comparing cV with cVp [see Lemma 6.2],
and other proofs are similar to the periodic potential case.

This paper is organized as follows. In Section 2, we recall some lemmas which we will use
in the paper. In Section 3, we introduce the Mountain Pass Theorem without (PS) condition.
In Section 4, we give the proof of Theorem 1.2. Subsequently, Theorems 1.3 and 1.4 will be
proved in Sections 5 and 6, respectively.

Throughout this paper, we use the following notations:

• Ls(R3) (2 ≤ s < ∞) denotes the Lebesgue space with the norm ∥u∥s =
(∫

R3 |u|s dx
)1/s;

• Br(x) denotes the ball centered at x with radius r;

• C, C′, C̃, Ci (i = 1, 2, . . . ) denote positive constants possibly different in different places;

• on(1) denotes a real sequence with on(1) → 0 as n → +∞;

• H1
c
(
R3) = {u ∈ H1 (R3) | u has a compact support

}
.

2 Preliminaries

In this section, we present the variational setting and give a special decomposition of the
functional I(u), which needs to be adjusted since I(u) may not be well defined in H1(R3).
According to the research techniques in [23], we decompose I(u) into a sum of a C1 functional
plus a convex lower semicontinuous functional.
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2.1 Variational setting

Let H1(R3) denote the Sobolev space equipped with the norm

∥u∥H =

(∫
R3

(
|∇u|2 + u2)dx

) 1
2

,

and D1,2 (R3) = {u | u ∈ L6 (R3) ,∇u ∈ L2 (R3)} be endowed with the norm

∥u∥D1,2 =

(∫
R3

|∇u|2 dx
) 1

2

.

Let D be the completion of C∞
0
(
R3) with respect to the norm ∥ · ∥D induced by the scalar

product

⟨ϕ, ξ⟩D :=
∫

R3
∇ϕ∇ξdx +

∫
R3

∆ϕ∆ξdx.

Clearly, D is a Hilbert space continuously embedded into D1,2 (R3) and consequently in
L6 (R3). Moreover, the space D is continuously embedded in L∞ (R3) (see Lemma 3.1 in
[7]).

Next, we present the basic lemma.

Lemma 2.1 ([7, Lemma 3.2]). The space C∞
0
(
R3) is dense in

A :=
{

ϕ ∈ D1,2 (R3) : ∆ϕ ∈ L2 (R3)}
normed by

√
⟨ϕ, ϕ⟩D and, therefore, D = A.

In view of the Riesz Theorem, for every fixed u ∈ H1 (R3), there exists a unique solution
ϕu ∈ D of the second equation in (1.7), namely,

−∆ϕ + ∆2ϕ = 4πu2

and ϕu can be represented by

ϕu =
∫

R3

1 − e−|x−y|

|x − y| u2(y)dy. (2.1)

Then we have the following fundamental properties.

Lemma 2.2 ([7, Lemma 3.4] and [27, Lemma 2.2]). For u ∈ H1 (R3) \{0}, we have:

(1) ϕu ≥ 0 in R3;

(2) ϕu ∈ Ls (R3) ∩ C0
(
R3), ∀s ∈ (3,+∞];

(3) ϕu(·+y) = ϕu(·+ y), ∀y ∈ R3;

(4) ∥ϕu∥D ≤ C∥u∥2
H,
∫

R3 ϕuu2 dx ≤ C∥u∥4
12/5 ;

(5) if un ⇀ u in H1 (R3), then ϕun ⇀ ϕu in D;

(6) if un → u in L
12
5
(
R3), then ϕun → ϕu in D and

∫
R3 ϕun u2

n dx →
∫

R3 ϕuu2 dx;
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(7) ϕu is the unique minimizer of the functional

X(ϕ) =
1
2
∥∇ϕ∥2

2 +
1
2
∥∆ϕ∥2

2 − 4π
∫

R3
ϕu2 dx, ϕ ∈ D.

Now we introduce the working space,

EV :=
{

u ∈ H1 (R3) :
∫

R3
V(x)u2 dx < +∞

}
with the norm ∥u∥V induced by the scalar product

⟨u, v⟩V =
∫

R3
(∇u∇v + (V(x) + 1)uv)dx.

Note that EV is a Hilbert space, and the embedding EV ↪→ H1 (R3) is continuous.
For any (u, ϕ) ∈ EV ×D, the associated energy functional of system (1.7) is given by

S(u, ϕ) =
1
2

∫
R3

(
|∇u|2 + (V(x) + 1)u2)dx − 1

2

∫
R3

ϕu2 dx +
1

16π

∫
R3

|∇ϕ|2 dx

+
1

16π

∫
R3

|∆ϕ|2 dx − 1
2

∫
R3

u2 log u2 dx.
(2.2)

To avoid the difficulties caused by the strong uncertainty of the functional, we use the usual
reduction function procedure introduced in [7]. From this, we can obtain that the reduced
functional has the form as follows

I(u) := S(u, ϕu) =
1
2

∫
R3

(
|∇u|2 + (V(x) + 1)u2)dx

− 1
4

∫
R3

ϕuu2 dx − 1
2

∫
R3

u2 log u2 dx.
(2.3)

Remark 2.3. The following conclusions are equivalent:

(i) the pair (u, ϕ) ∈ EV ×D is a critical point of S , namely, (u, ϕ) is a solution of (1.7);

(ii) u is a critical point of I(u) and ϕ = ϕ(u).

2.2 Decomposition of the functional I(u)

For δ > 0 small, let us define the following functions:

F(s) =


0, s = 0,

− 1
2 s2 log s2, 0 < |s| < δ,

− 1
2 s2 (log δ2 + 3

)
+ 2δ|s| − 1

2 δ2, |s| ≥ δ

and

G(s) =

{
0, |s| < δ,
1
2 s2 log

(
s2/δ2)+ 2δ|s| − 3

2 s2 − 1
2 δ2, |s| ≥ δ.

Then,

G(s)− F(s) =
1
2

s2 log s2, ∀s ∈ R
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and the functional I : EV → (−∞,+∞] may be denoted as

I(u) = Φ(u) + Ψ(u), u ∈ EV , (2.4)

where

Φ(u) :=
1
2

∫
R3

(
|∇u|2 + (V(x) + 1)u2) dx − 1

4

∫
R3

ϕuu2 dx −
∫

R3
G(u) dx

and
Ψ(u) :=

∫
R3

F(u) dx.

As proven in [11], we can list some properties of F and G as follows:

• F, G ∈ C1(R, R).

• If δ > 0 is fixed and small enough, F is a nonnegative, convex, even function and
F′(s)s ≥ 0, for all s ∈ R.

• For every fixed p ∈ (2, 6), there exists C > 0 such that for any s ∈ R,∣∣G′(s)
∣∣ ≤ C |s|p−1 . (2.5)

Therefore, referring to [11], we can get that Ψ is nonnegative, convex and lower semicontinu-
ous, and Φ ∈ C1(EV , R). Next, we will review some definitions and results of convex analysis
that first appeared in [24].

Definition 2.4. Let E be a Banach space, E′ be the dual space of E and ⟨·, ·⟩ be the duality
pairing between E and E′. Let I : E → R be a functional and I(u) = Φ(u) + Ψ(u), where
Φ ∈ C1(E, R) and Ψ is convex and lower semicontinuous. Then the following results are
given:

(i) The set D(I) := {u ∈ E : I(u) < +∞} is called the effective domain of I.

(ii) The sub-differential ∂I(u) of the functional I at a point u ∈ E is the following set{
w ∈ E′ :

〈
Φ′(u), v − u

〉
+ Ψ(v)− Ψ(u) ≥ ⟨w, v − u⟩, ∀v ∈ E

}
.

(iii) u ∈ E is a critical point of I such that u ∈ D(I) and 0 ∈ ∂I(u), i.e.,〈
Φ′(u), v − u

〉
+ Ψ(v)− Ψ(u) ≥ 0, ∀v ∈ E.

(iv) A Palais–Smale sequence at level c for I is a sequence {un} ⊂ E such that I (un) → c and
there is a numerical sequence σn → 0+ with〈

Φ′ (un) , v − un
〉
+ Ψ(v)− Ψ (un) ≥ −σn ∥v − un∥ , ∀v ∈ E. (2.6)

(v) The functional I satisfies the Palais–Smale condition at level c ((PS)c condition, for short)
if each Palais–Smale sequence of I has a convergent subsequence in E.
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To further advance the analysis, for any u ∈ D(I), we define I′(u) : H1
c
(
R3)→ R given by〈

I′(u), z
〉
=
〈
Φ′(u), z

〉
+
∫

R3
F′(u)z dx, ∀z ∈ H1

c
(
R3)

and ∥∥I′(u)
∥∥ := sup

{〈
I′(u), z

〉
: z ∈ H1

c
(
R3) with ∥z∥V ≤ 1

}
.

If ∥I′(u)∥ < +∞, then I′(u) may be extended to a bounded operator in EV , and it can also be
considered as an element of E′

V .
From Lemma 3.3 of reference [21], we state some useful results that can help us solve the

considered problem.

Lemma 2.5. Assume that I(u) satisfies (2.4). Then

(i) if u ∈ D (I) is a critical point of I, then for any v ∈ EV ,〈
Φ′(u), v − u

〉
+ Ψ(v)− Ψ(u) ≥ 0,

namely, ∫
R3
∇u∇(v − u)dx +

∫
R3
(V(x) + 1)u(v − u)dx −

∫
R3

ϕuu(v − u) dx

+
∫

R3
F(v)dx −

∫
R3

F(u)dx ≥
∫

R3
G′(u)(v − u)dx;

(ii) for every u ∈ D (I) such that ∥I′(u)∥ < +∞, we have ∂I(u) ̸= ∅, i.e., there is w ∈ E′
V , which

is denoted by w = I′(u), such that for any v ∈ EV ,〈
Φ′(u), v − u

〉
+
∫

R3
F(v)dx −

∫
R3

F(u)dx ≥ ⟨w, v − u⟩;

(iii) if u ∈ D (I) is a critical point of I, then (u, ϕu) is one solution of system (1.7);

(iv) if {un} ⊂ EV is a Palais–Smale sequence, then for any z ∈ H1
c
(
R3),〈

I′ (un) , z
〉
= on(1)∥z∥V ;

(v) if Λ is a bounded domain with regular boundary, then Ψ (and hence I) is of class C1 in H1(Λ).
Precisely, for any u ∈ H1(Λ), the functional

Ψ(u) =
∫

Λ
F(u)dx

belongs to C1 (H1(Λ), R
)
.

According to the above proprieties, we can directly get the following consequences.

Lemma 2.6. If u ∈ D(I) and ∥I′(u)∥ < +∞, then F′(u)u ∈ L1(R3), where I satisfies (2.4).

Proof. This proof process relies on Lemma 2.5-(ii) and (v), and for more details, readers can
refer to the Lemma 2.1 in [2]. For brevity, we will omit the specifics here.

In what follows, for each u ∈ D(I), we can set the functional I′(u) : EV → R given by

I′(u)u =
∫

R3

(
|∇u|2 + (V(x) + 1) u2 − ϕuu2 − G′(u)u

)
dx +

∫
R3

F′(u)u dx (2.7)

=
∫

R3

(
|∇u|2 + V(x)u2 − ϕuu2

)
dx −

∫
R3

u2 log u2 dx. (2.8)
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3 Mountain pass theorem without (PS) condition

In this section, we will introduce an abstract theorem for the functional of the type I(u) =

Φ(u) + Ψ(u), where Φ ∈ C1 and Ψ is convex and lower semicontinuous. This method was
proposed by Alves and de Morais Filho [2] under the influence of Szulkin [24].

Proposition 3.1 ([2]). Let E be a Banach space and I : E → (−∞,+∞] be a functional such that:

(i) I(u) = Φ(u) + Ψ(u), where Φ(u) ∈ C1(E, R), and Ψ : E → (−∞,+∞] is convex, lower
semicontinuous and Ψ(u) ̸≡ +∞;

(ii) I(0) = 0 and I|∂Bρ(0) ≥ α, for some ρ, α > 0;

(iii) I(e) ≤ 0, for some e /∈ Bρ(0).

Then for fixed ε > 0, there is uε ∈ E satisfying〈
Φ′ (uε) , w − uε

〉
+ Ψ(w)− Ψ (uε) ≥ −3ε ∥w − uε∥ , ∀w ∈ E

and
I (uε) ∈ [c − ε, c + ε],

where
c := inf

γ∈Γ
max
t∈[0,1]

I(γ(t))

and
Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, I(γ(1)) < 0}.

Corollary 3.2. From Proposition 3.1, it is clear that there exists a (PS) sequence {un} ⊂ E for I,
namely, I (un) → c and〈

Φ′ (un) , w − un
〉
+ Ψ(w)− Ψ (un) ≥ −σn ∥w − un∥ , ∀w ∈ E

with σn → 0+.

In the sequel, we will apply Proposition 3.1 and Corollary 3.2 to obtain our results. The
most crucial point is to prove that the (PS) sequence has a convergent subsequence. First, we
prove that I possesses the Mountain Pass Geometry.

Lemma 3.3. Assume that (Vi) holds, i = 1, 2, 3. Then

(i) there exist b0, r0 > 0 such that I(u) ≥ b0 with ∥u∥V = r0;

(ii) there exists ẽ ∈ R3 \ Br0(0) with ∥ẽ∥V > r0 such that I(ẽ) < 0.

Proof. (i) It is clear that I(0) = 0. According to (2.4) and (2.5) for p ∈ (2, 6), together with
F ≥ 0 and Lemma 2.2-(4), we get

I(u) ≥ 1
2
∥u∥2

V − C1∥u∥4
V − C2∥u∥p

V ≥ b0 > 0

for some b0 > 0 and ∥u∥V = r0 small enough.



Ground state solutions for the logarithmic Schrödinger–Bopp–Podolsky system 11

(ii) First fix u ∈ D (I) \{0} and t > 0, then according to (2.3) and Lemma 2.2-(1), one can
conclude

I(tu) ≤ t2

2
∥u∥2

V − 1
2

∫
R3

t2u2 log
(
|tu|2

)
dx

= t2
(

I(u) +
1
4

∫
R3

ϕuu2 dx − log t
∫

R3
u2 dx

)
→ −∞,

as t → +∞. Choosing ẽ = t∗u with ∥ẽ∥V > r0 for t∗ > 0 large enough, then we obtain
I(ẽ) < 0.

Remark 3.4. According to Proposition 3.1 and Lemma 3.3, there exists a (PS) sequence {un} ⊂
EV of I(u) at the level c > 0, where

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) (3.1)

and
Γ = {γ ∈ C ([0, 1], EV) : γ(0) = 0, γ(1) = ẽ} .

Lemma 3.5. Assume that (Vi) holds, i = 1, 2, 3. If {un} ⊂ EV is a (PS) sequence of I(u) at the level
c, then {un} is bounded in EV , where c is defined in (3.1).

Proof. By (2.3) and (2.8), for some C > 0, we deduce∫
R3

u2
n dx +

1
2

∫
R3

ϕun u2
n dx = 2I (un)− I′ (un) un

= 2c + on(1) + on(1) ∥un∥V

≤ C + on(1) ∥un∥V .

Consequently,
∥un∥2

2 ≤ C + on(1) ∥un∥V . (3.2)

Next, we will use the logarithmic Sobolev inequality (1.8) for a convenient small a > 0. Fixing
a2

π = 1
4 , it follows from (1.8) and (3.2) that

∫
R3

u2
n log u2

n dx ≤ 1
4
∥∇un∥2

2 +

(
log ∥un∥2

2 − 3

(
1 + log

√
4
π

))
∥un∥2

2

≤ 1
4
∥∇un∥2

2 + C1

(
log ∥un∥2

2 + 1
)
∥un∥2

2

≤ 1
4
∥∇un∥2

2 + C1 (log (C + on(1) ∥un∥V) + 1) (C + on(1) ∥un∥V)

≤ 1
4
∥∇un∥2

2 + C2 (log ∥un∥V) ∥un∥V .

(3.3)

Using the fact that given θ ∈ (0, 1) there is A > 0 satisfying

|t log t| ≤ A
(

1 + |t|1+θ
)

, t ≥ 0,

we obtain, together with (3.3), the inequalities below∫
R3

u2
n log u2

n dx ≤ 1
4
∥∇un∥2

2 + C̃
(

1 + ∥un∥1+θ
V

)
≤ 1

4
∥∇un∥2

2 + C̃ (1 + ∥un∥V)
1+θ

(3.4)
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for θ ∈ (0, 1) and n large enough. Then by (3.4), we have

c + on(1) ∥un∥V = I (un)−
1
4

I′ (un) un

≥ 1
4

(
∥un∥2

V −
∫

R3
u2

n log u2
n dx

)
≥ C′

(
∥un∥2

V − (1 + ∥un∥V)
1+θ
)

for some C′ > 0 independent of n. From the above discussion, we get that {un} is bounded in
EV .

Remark 3.6. According to Lemma 3.3, we consider the fiber mapping t → f (t) := I(tu) given
by

f (t) =
t2

2

∫
R3

(
|∇u|2 + (V(x) + 1)u2)dx

− t4

4

∫
R3

ϕuu2 dx − t2

2

∫
R3

u2 log |tu|2 dx.
(3.5)

Then we can easily infer that f (t) has a maximum value at the unique critical point tµ > 0.
Indeed, from the expression of f (t) we can observe

t2

2

∫
R3

u2 log |tu|2 dx =
t2

2

∫
R3

u2 log |u|2 dx +
t2

2
log t2

∫
R3

|u|2 dx.

Hence, for given u ∈ EV , we can denote f (t) as

f (t) := C1t2 − C2t4 − C3t2 log t2,

correspondingly,
f ′(t) = C4t − C5t3 − C6t log t2

= tg(t),

where
g(t) := C4 − C5t2 − C6 log t2.

From the expression of g, we know that g is a monotonically decreasing function for t > 0,
and g has the unique zero point tµ. In other words, g(t) > 0 for t ∈ (0, tµ) and g(t) < 0
for t ∈ (tµ,+∞). Hence, it’s easy to conclude f ′(t) > 0 for t ∈ (0, tµ) and f ′(t) < 0 for
t ∈ (tµ,+∞), i.e., f achieves a positive maximum at the unique critical point tµ > 0.

Next, we define
MV =

{
u ∈ D (I) \{0}

∣∣ I′(u)u = 0
}

. (3.6)

In fact, for any u ∈ D (I) \{0}, every ray {tu | t > 0} intersects the set (3.6) at exactly the
unique point tµu. In this way, tµ = 1, if and only if, u ∈ MV .

Lemma 3.7. If c denotes the mountain level associated with I(u), by Remark 3.6, it is possible to prove
the equality

0 < c = cV ,

where cV := infu∈MV I(u).
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Proof. Since u ∈ MV , by Lemma 3.3 and Remark 3.6, one has

0 < c ≤ max
t≥0

I(tu) = I(tµu) = I(u),

namely,
c ≤ inf

u∈MV
I(u).

Next, we need to prove the reverse inequality. Let {un} ⊂ EV be a (PS)c sequence of I(u),
then Lemma 3.5 implies that {un} is bounded in EV . Now, we claim that

∥un∥2 ↛ 0. (3.7)

In fact, according to the contradictory argument and interpolation inequality, we have that
un → 0 in Lp(R3), ∀p ∈ [2, 6). Then, by (2.5) we get∫

R3
G′ (un) un dx ≤ C

∫
R3

|un|p dx → 0.

On the other hand, from (2.7), Lemma 2.2-(4) and the fact that F′(s)s ≥ 0, we obtain

∥un∥2
V +

∫
R3

F′ (un) un dx = I′(un)un +
∫

R3
G′ (un) un dx +

∫
R3

ϕun u2
n dx

= on(1),

from where it follows that un → 0 in EV and F′(un)un → 0 in L1(R3) as n → +∞. Further-
more, from the definition of F(s), we can directly calculate that 0 ≤ F(s) ≤ F′(s)s for all s ∈ R.
Hence, F(un) → 0 in L1(R3), and so, I(un) → 0, which is contradictory to I(un) → c > 0. This
proves (3.7). Naturally, we may assume that there exist constants a, b > 0 such that

0 < a ≤ ∥un∥2 ≤ b, ∀n ∈ N.

Moreover, by Remark 3.6, for every un ∈ EV , we can let sn > 0 be such that snun ∈ MV . From
the definition of MV , we can see

I (snun) = I (snun)−
1
2

I′ (snun) snun, (3.8)

which means

s2
n
2

∫
R3

(
|∇un|2 + (V(x) + 1)u2

n

)
dx − s4

n
4

∫
R3

ϕun u2
n dx

− s2
n
2

∫
R3

u2
n log |snun|2 dx =

s2
n
2

∫
R3

|un|2 dx +
s4

n
4

∫
R3

ϕun u2
n dx,

namely, ∫
R3

(
|∇un|2 + V(x)u2

n

)
dx − 2 log sn

∫
R3

u2
n dx

−
∫

R3
u2

n log u2
n dx = s2

n

∫
R3

ϕun u2
n dx.

(3.9)

Recalling that {un} is a bounded (PS)c sequence of I(u), and based on (2.8), we have

I′ (un) un =
∫

R3

(
|∇un|2 + V(x)u2

n − ϕun u2
n

)
dx −

∫
R3

u2
n log u2

n dx

= on(1).
(3.10)
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It follows from (3.9) and (3.10) that

on(1) = 2 ∥un∥2
2 log sn +

(
s2

n − 1
) ∫

R3
ϕun u2

n dx,

then combining (3.7) and Lemma 2.2-(4), we derive that sn → 1 as n → +∞. From this
information, we arrive at

inf
u∈MV

I(u) ≤ I(snun) → c as n → +∞.

The proof has been completed.

4 Proof of Theorem 1.2

Theorem 4.1 ([11]). Under the condition (V1), EV can be compactly embedded into Lp(R3), p ∈
[2, 6).

Proof of Theorem 1.2. From Lemma 3.5, it is known that the sequence {un} is bounded. Passing
to a subsequence, un ⇀ u in EV for some u and by Theorem 4.1 with (3.7), we have un → u ̸= 0
in Lp(R3) for p ∈ [2, 6). Then by the Hölder inequality, combining Lemma 2.2-(4) and (2.5),
respectively, we can obtain the following conclusions∫

R3
ϕun un(u − un) dx → 0, (4.1)∫

R3
G′ (un) (u − un) dx → 0. (4.2)

Since {un} is the (PS) sequence, depending on Corollary 3.2 and taking w = u, we derive that〈
Φ′ (un) , u − un

〉
+ Ψ(u)− Ψ (un) ≥ −σn ∥u − un∥V ,

namely,

∫
R3

∇un∇(u − un) dx +
∫

R3
(V(x) + 1) un (u − un) dx −

∫
R3

ϕun un(u − un) dx

−
∫

R3
G′ (un) (u − un) dx + Ψ(u)− Ψ (un) ≥ −σn ∥u − un∥V ,

equivalently,

⟨un, u − un⟩V −
∫

R3
ϕun un(u − un) dx −

∫
R3

G′ (un) (u − un) dx

+ Ψ(u)− Ψ (un) ≥ −σn ∥u − un∥V .

Hence, one has

lim
n→+∞

(
⟨un, u⟩V − ∥un∥2

V

)
− lim

n→+∞

(∫
R3

ϕun un(u − un) dx +
∫

R3
G′ (un) (u − un) dx

)
+ lim

n→+∞
(Ψ(u)− Ψ (un)) ≥ 0.

Combining un ⇀ u in EV with (4.1) and (4.2), the above inequality becomes
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lim
n→+∞

(
∥u∥2

V − ∥un∥2
V

)
+ lim

n→+∞
(Ψ(u)− Ψ (un)) ≥ 0, (4.3)

namely,

∥u∥2
V − lim

n→+∞
∥un∥2

V + Ψ(u)− lim
n→+∞

Ψ (un) ≥ 0. (4.4)

On the other hand, Ψ is lower semicontinuous, i.e., Ψ(u) ≤ limn→+∞ Ψ (un), together with
(4.4), we deduce

∥u∥2
V − lim

n→+∞
∥un∥2

V ≥ 0.

Then according to the weak lower semi-continuity of the norm ∥u∥2
V ≤ limn→+∞ ∥un∥2

V , we
have ∥un∥V → ∥u∥V , which implies un → u in EV . Furthermore, by combining this result with
Lemma 3.7, we can conclude that I(u) = c = cV , i.e., u is a ground state solution for equation
(1.7). The proof is completed.

5 Proof of Theorem 1.3

In this section, we give the proofs of Theorem 1.3. Since the defined manifold MV lacks C1

regularity, we will adopt an indirect approach by borrowing the method from [17] to obtain
our results.

Lemma 5.1. Assume that (Vi) holds, i = 2, 3. If u ∈ MV and I(u) = c, then u is a solution of
Eq.(1.7).

Proof. Suppose to the contrary, there exists u such that I(u) = c and I′(u) ̸= 0. Then there
exists η ∈ C∞

0
(
R3) such that ⟨I′(u), η⟩ < −1. Choose a constant ϵ ∈ (0, 1) small enough such

that for all |t − 1| ≤ ϵ and |σ| ≤ ϵ,

〈
I′(tu + ση), η

〉
≤ −1

2
. (5.1)

Define a cut-off function 0 ≤ χ ≤ 1 such that χ(t) = 1 for |t − 1| ≤ ϵ
2 and χ(t) = 0 for

|t − 1| ≥ ϵ. For t > 0, we introduce a curve γ(t) = tu for |t − 1| ≥ ϵ and γ(t) = tu + ϵχ(t)η
for |t − 1| < ϵ. Clearly, γ(t) is a continuous curve, and for |t − 1| < ϵ, ∥γ(t)∥ > 0 holds when
ϵ small enough. Next, we claim I(γ(t)) < c, for all t > 0. Indeed, if |t − 1| ≥ ϵ, together with
Remark 3.6, I(γ(t)) = I(tu) < I(u) = c. If |t − 1| < ϵ, then by Lemma 2.5-(v), the mapping
[0, ϵ] ∋ σ 7→ I(tu + σχ(t)η) is of C1. Consequently, together with (5.1), there exists σ̃ ∈ (0, ϵ)

such that

I(tu + ϵχ(t)η) = I(tu) +
〈

I′(tu + σ̃χ(t)η), ϵχ(t)η
〉
≤ I(tu)− ϵ

2
χ(t) < c.

Let ω(u) = ⟨I′(u), u⟩. By the definition of γ(t), we have ω(γ(1 − ϵ)) = ω((1 − ϵ)u) > 0 and
ω(γ(1 + ϵ)) = ω((1 + ϵ)u) < 0. Since the mapping t → ω(γ(t)) is continuous, there exists
t̃ ∈ (1 − ϵ, 1 + ϵ) such that ω (γ (t̃)) = 0. Thus, γ (t̃) ∈ MV and I (γ (t̃)) < c, which is a
contradiction. The proof is complete.

Proof of Theorem 1.3. From Proposition 3.1, Corollary 3.2 and Lemma 3.3, there exists a (PS)c

sequence {un} of I(u) such that
I (un) → c
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and 〈
Φ′ (un) , u − un

〉
+ Ψ(u)− Ψ (un) ≥ −σn ∥u − un∥V , ∀u ∈ EV ,

with σn → 0+. As in the previous section {un} is a bounded sequence in EV , then there is
u0 ∈ EV , and a subsequence of {un}, still denoted {un}, such that

un ⇀ u0 in EV , (5.2)

un → u0 in L2
loc
(
R3) , (5.3)

un → u0 a.e. in R3. (5.4)

Next, taking any test function η ∈ C∞
0 (R3), from (2.5) and (5.2) together with Lemmas 2.2-(4)

and 2.5-(v), we have

0 = lim
n→+∞

〈
I′ (un) , η

〉
= lim

n→+∞

[
⟨un, η⟩V −

∫
R3

ϕun unη dx +
∫

R3
F′(un)η dx −

∫
R3

G′(un)η dx
]

= ⟨u0, η⟩V −
∫

R3
ϕu0 u0η dx +

∫
R3

F′(u0)η dx −
∫

R3
G′(u0)η dx

=
〈

I′ (u0) , η
〉

,

which means that u0 is a weak solution to equation (1.7). To complete this proof of Theorem
1.3, the key is to prove that u0 ̸= 0 in EV . In fact, combined with (3.7), the Lions Concentration
Compactness Principle [16] implies that there are parameters r, β > 0, and a sequence {yn} ⊂
Z3 such that

lim
n→+∞

∫
Br(yn)

|un|2 dx ≥ β > 0.

Now, setting vn(x) = un (x + yn), {yn} ⊂ Z3, it follows that

∫
Br(0)

|vn|2 dx =
∫

Br(0)
|un (x + yn)|2 dx =

∫
Br(yn)

|un|2 dx ≥ β

2
> 0. (5.5)

Since V(x) satisfies (V2), there hold ∥vn∥V = ∥un∥V and

I (vn) → c, I′ (vn) → 0, as n → +∞,

so {vn} is also a bounded (PS)c sequence of I. Therefore, if v0 denotes the weak limit of {vn}
in EV , for some subsequence, we have that

vn ⇀ v0 in EV , (5.6)

vn → v0 a.e. in R3, (5.7)

vn → v0 in Lq (Br(0)) , ∀ r > 0 and q ∈ [1, 6) . (5.8)

From (5.8), we derive that ∫
Br(0)

|v0|2 dx ≥ β

2
> 0,

which shows that v0 ̸= 0. Using the standard argument, one has I′(v0)η = 0, ∀η ∈ C∞
0
(
R3),

i.e., v0 is a non trivial weak solution for equation (1.7).
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Further, because v0 ∈ MV , it follows from (2.3), (2.8) and the Fatou lemma that

2c ≤ 2I(v0) = 2I(v0)− I′(v0)v0

=
∫

R3
v0

2 dx +
1
2

∫
R3

ϕv0 v0
2 dx

≤ lim
n→+∞

(∫
R3

v2
n dx +

1
2

∫
R3

ϕvn v2
n dx

)
≤ lim

n→+∞

(∫
R3

v2
n dx +

1
2

∫
R3

ϕvn v2
n dx

)
= lim

n→+∞

(
2I(vn)− I′(vn)vn

)
= 2c,

that is, cV = c = I(v0) and consequently, v0 is a ground state solution of equation (1.7).

6 Proof of Theorem 1.4

In this section, we modify some notations.
Consider the vector space H1 (R3) endowed with the norm

∥u∥H =

(∫
R3

(
|∇u|2 +

(
Vp(x) + 1

)
u2
)

dx
) 1

2

,

where Vp is defined in (V3). By replacing V by Vp, we have a periodic problem as in the
following problem {

−∆u + Vp(x)u − ϕu = u log u2 in R3,

−∆ϕ + ∆2ϕ = 4πu2 in R3.
(6.1)

The underlying energy functional Ip : H1 (R3) → (−∞,+∞] associated with problem (6.1)
can be defined as

Ip(u) = Φp(u) + Ψ(u), ∀u ∈ H1 (R3) , (6.2)

where

Φp(u) :=
1
2

∫
R3

(
|∇u|2 +

(
Vp(x) + 1

)
u2
)

dx − 1
4

∫
R3

ϕuu2 dx −
∫

R3
G(u) dx,

and
Ψ(u) :=

∫
R3

F(u) dx.

Remark 6.1. Note that we would like to point out that the proof of Lemma 3.7 is indepen-
dent of potential conditions. Therefore, in the case of asymptotically periodic potentials, the
following items are valid:

(i) if c denotes the mountain level associated with I(u), we have

0 < c = cV := inf
u∈MV

I(u), (6.3)

where MV is defined in (3.6).
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(ii) If d denotes the mountain level associated with Ip(u), we have that

0 < d = cVp := inf
u∈Mp

Ip(u), (6.4)

where
Mp =

{
u ∈ D (I) \{0} : I′p(u)u = 0

}
.

Lemma 6.2. Assume that V(x) satisfies (V3). Then

(i) cV < cVp .

(ii) If I(un) → c ∈ (0, cVp) and I′(un) → 0, then un ⇀ u0 ̸= 0 after passing to a subsequence, u0

is a critical point of I(u) and I(u0) ≤ c.

Proof. (i) Similar to Remark 3.6, we know that for any u ∈ Mp, one has Ip(u) = maxt>0 Ip(tu),
and there exists tµ > 0 such that tµu ∈ MV and I(tµu) = maxt>0 I(tu). By (V3),

cV = inf
u∈MV

I(u) ≤ I(tµu) = max
t>0

I(tu) < max
t>0

Ip(tu) = Ip(u).

Because of the arbitrariness of u, we get that cV < cVp .

(ii) As in Lemma 3.5, {un} is bounded in EV with the level c. Up to a subsequence, we can
assume that

un ⇀ u0 in EV ,

un → u0 in L2
loc
(
R3) ,

un → u0 a.e. in R3.

Similar to the proof of Theorem 1.3, taking any φ ∈ C∞
0 (R3), one has I′(u0)φ = 0, i.e., u0 is a

weak solution of equation (1.7). By Fatou’s lemma, one has

I(u0) = I(u0)−
1
2

I′(u0)u0 =
∫

R3
u0

2 dx +
1
2

∫
R3

ϕu0 u0
2 dx

≤ lim
n→+∞

(∫
R3

u2
n dx +

1
2

∫
R3

ϕun u2
n dx

)
= lim

n→+∞

(
I(un)−

1
2

I′(un)un

)
= c,

(6.5)

so, I(u0) ≤ c. Next, we claim that u0 ̸= 0 in EV . Suppose, by contradiction, that u0 = 0. For
any ϵ > 0, there exists R(ϵ) > 0 such that∣∣V(x)− Vp(x)

∣∣ < ϵ, ∀|x| > R.

Since un → u0 = 0 in L2
loc

(
R3) and {un} is bounded, we obtain∫

R3

∣∣V(x)− Vp(x)
∣∣ u2

n dx ≤
∫

BR(0)

∣∣V(x)− Vp(x)
∣∣ u2

n dx + ϵ
∫

R3\BR(0)
u2

n dx = on(1),

which yields, as n → +∞

I (un)− Ip (un) =
1
2

∫
R3

∣∣V(x)− Vp(x)
∣∣ u2

n dx → 0.
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Using the Hölder inequality and taking w with ∥w∥ = 1, we obtain, as n → +∞∣∣∣〈I′ (un)− I′p (un) , w
〉∣∣∣ ≤ ∫

R3

∣∣V(x)− Vp(x)
∣∣ |un| |w| dx

≤ C
(∫

R3

∣∣V(x)− Vp(x)
∣∣ u2

n dx
) 1

2

→ 0.

In summary, we can immediately conclude

Ip(un) → c and I′p(un) → 0,

namely, {un} is a bounded (PS)c sequence for Ip. From (3.7) and Lions lemma [16], it follows
that there exist R, κ > 0, {zn} ⊂ Z3 satisfying∫

BR(zn)
|un|2 dx ≥ κ > 0, (6.6)

for all n ∈ N. Since u(x) = 0 for all x ∈ R3, we have |zn| → +∞. Taking ωn(x) = un(x + zn),
then according to condition (V3), {ωn} is also a bounded (PS)c sequence for Ip. Therefore, we
can assume there exists ω0 ∈ EV such that ωn ⇀ ω0 in EV , ωn → ω0 in L2

loc

(
R3) and ωn → ω0

a.e. in R3 up to a subsequence. By (6.6), we have∫
BR(0)

|ωn|2 dx =
∫

BR(zn)
|un|2 dx ≥ κ > 0,

so, ω0 ̸= 0. Then, using the standard argument, we get that for any v ∈ C∞
0
(
R3), I′p (ω0) v = 0,

i.e., ω0 is a nontrivial week solution of Eq. (6.1). Following the proof of Theorem 1.3, we know
that ω0 is a ground-state solution for equation (6.1), i.e.,

cVp = Ip(ω0). (6.7)

By repeating the method of (6.5), this inequality Ip(ω0) ≤ c holds. Therefore, together with
(6.7) and the fact that c ∈ (0, cVp), we obtain the following conclusions

Ip(ω0) ≤ c < cVp = Ip(ω0),

which is a contradiction. This completes the proof.

Proof of Theorem 1.4. From Lemmas 3.3 and 3.5, there exists a bounded (PS) sequence {un}
for I with the level c ∈ (0, cVp). By Lemma 6.2-(ii), we obtain a critical point u0 ̸= 0 of I such
that I(u0) ≤ c. So, we have I′(u0)u0 = 0, i.e., u0 ∈ MV . Then, arguing again as in the periodic
case, it is possible to prove that u0 is a ground state solution for Eq.(1.7). This completes the
proof of Theorem 1.4.
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