Decompositions of automata and transition semigroups

Petković Tatjana and Ćirić Miroslav and Bogdanović Stojan: Decompositions of automata and transition semigroups. In: Acta cybernetica, (13) 4. pp. 385-403. (1998)

[thumbnail of cybernetica_013_numb_004_385-403.pdf]
Preview
Cikk, tanulmány, mű
cybernetica_013_numb_004_385-403.pdf

Download (932kB) | Preview

Abstract

The purpose of this paper is to describe structural properties of automata whose transition semigroups have a zero, left zero, right zero or bi-zero, or are nilpotent extensions of rectangular bands, left zero bands or right zero bands, or are nilpotent. To describe the structure of these automata we use various well-known decomposition methods of automata theory - direct sum decompositions, subdirect and parallel decompositions, and extensions of automata. Automata that appear as the components in these decompositions belong to some well-known classes of automata, such as directable, definite, reverse definite, generalized definite and nilpotent automata. But, we also introduce some new classes of automata: generalized directable, trapped, onetrapped, locally directable, locally one-trapped, locally nilpotent and locally definite automata. We explain relationships between the classes of all these automata.

Item Type: Article
Journal or Publication Title: Acta cybernetica
Date: 1998
Volume: 13
Number: 4
ISSN: 0324-721X
Page Range: pp. 385-403
Language: English
Place of Publication: Szeged
Related URLs: http://acta.bibl.u-szeged.hu/38506/
Uncontrolled Keywords: Számítástechnika, Kibernetika
Additional Information: Bibliogr.: p. 401-403. ; összefoglalás angol nyelven
Subjects: 01. Natural sciences
01. Natural sciences > 01.02. Computer and information sciences
Date Deposited: 2016. Oct. 15. 12:26
Last Modified: 2022. Jun. 13. 15:49
URI: http://acta.bibl.u-szeged.hu/id/eprint/12598

Actions (login required)

View Item View Item