Learning tree patterns for syntactic parsing

Hócza András: Learning tree patterns for syntactic parsing. In: Acta cybernetica, (17) 3. pp. 647-659. (2006)

[thumbnail of Hocza_2006_ActaCybernetica.pdf]
Preview
Cikk, tanulmány, mű
Hocza_2006_ActaCybernetica.pdf

Download (124kB) | Preview

Abstract

This paper presents a method for parsing Hungarian texts using a machine learning approach. The method collects the initial grammar for a learner from an annotated corpus with the help of tree shapes. The PGS algorithm, an improved version of the RGLearn algorithm, was developed and applied to learning tree patterns with various phrase types described by regular expressions. The method also calculates the probability values of the learned tree patterns. The syntactic parser of learned grammar using the Viterbi algorithm performs a quick search for finding the most probable derivation of a sentence. The results were built into an information extraction pipeline.

Item Type: Article
Journal or Publication Title: Acta cybernetica
Date: 2006
Volume: 17
Number: 3
ISSN: 0324-721X
Page Range: pp. 647-659
Language: English
Place of Publication: Szeged
Event Title: Conference on Hungarian Computational Linguistics (2.) (2004) (Szeged)
Related URLs: http://acta.bibl.u-szeged.hu/38521/
Uncontrolled Keywords: Számítástechnika, Nyelvészet - számítógép alkalmazása
Additional Information: Bibliogr.: p. 658-659. ; összefoglalás angol nyelven
Subjects: 01. Natural sciences
01. Natural sciences > 01.02. Computer and information sciences
06. Humanities
06. Humanities > 06.02. Languages and Literature
Date Deposited: 2016. Oct. 15. 12:25
Last Modified: 2022. Jun. 15. 14:06
URI: http://acta.bibl.u-szeged.hu/id/eprint/12788

Actions (login required)

View Item View Item