Brzozowski Janusz and Sinnamon Corwin: Complexity of right-ideal, prefix-closed, and prefix-free regular languages. In: Acta cybernetica, (23) 1. pp. 9-41. (2017)
Preview |
Cikk, tanulmány, mű
actacyb_23_1_2017_3.pdf Download (362kB) | Preview |
Abstract
A language L over an alphabet Σ is prefix-convex if, for any words x, y, z ϵ Σ* , whenever x and xyz are in L, then so is xy. Prefix-convex languages include right-ideal, prefix-closed, and prefix-free languages as special cases. We examine complexity properties of these special prefix-convex languages. In particular, we study the quotient/state complexity of boolean operations, product (concatenation), star, and reversal, the size of the syntactic semigroup, and the quotient complexity of atoms. For binary operations we use arguments with different alphabets when appropriate; this leads to higher tight upper bounds than those obtained with equal alphabets. We exhibit right-ideal, prefix-closed, and prefix-free languages that meet the complexity bounds for all the measures listed above.
Item Type: | Article |
---|---|
Journal or Publication Title: | Acta cybernetica |
Date: | 2017 |
Volume: | 23 |
Number: | 1 |
ISSN: | 0324-721X |
Page Range: | pp. 9-41 |
Language: | English |
Place of Publication: | Szeged |
Related URLs: | http://acta.bibl.u-szeged.hu/50021/ |
DOI: | 10.14232/actacyb.23.1.2017.3 |
Uncontrolled Keywords: | Kibernetika - nyelvészet, Matematikai nyelvészet |
Additional Information: | Bibliogr.: p. 39-41. ; összefoglalás angol nyelven |
Subjects: | 01. Natural sciences 01. Natural sciences > 01.01. Mathematics 01. Natural sciences > 01.02. Computer and information sciences |
Date Deposited: | 2018. Feb. 12. 08:27 |
Last Modified: | 2022. Jun. 20. 14:17 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/50061 |
Actions (login required)
View Item |