Li Fuyi and Long Lei and Huang Yongyan and Liang Zhanping: Ground state for Choquard equation with doubly critical growth nonlinearity. (2019)
Preview |
Cikk, tanulmány, mű
ejqtde_2019_033.pdf Download (432kB) | Preview |
Abstract
In this paper we consider nonlinear Choquard equation −∆u + V(x)u = (Iα ∗ F(u))f(u) in R N, where V ∈ C(RN), Iα denotes the Riesz potential, f(t) = |t| p−2 t + |t| q−2 t for all t ∈ R, N > 5 and α ∈ (0, N − 4). Under suitable conditions on V, we obtain that the Choquard equation with doubly critical growth nonlinearity, i.e., p = (N + α)/N, q = (N + α)/(N − 2), has a nonnegative ground state solution by variational methods.
Item Type: | Journal |
---|---|
Publication full: | Electronic journal of qualitative theory of differential equations |
Date: | 2019 |
Number: | 33 |
ISSN: | 1417-3875 |
Page Range: | pp. 1-15 |
DOI: | 10.14232/ejqtde.2019.1.33 |
Uncontrolled Keywords: | Differenciálegyenlet |
Additional Information: | Bibliogr.: p. 14-15. ; összefoglalás angol nyelven |
Date Deposited: | 2019. Sep. 27. 12:26 |
Last Modified: | 2021. Sep. 16. 10:42 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/62111 |
Actions (login required)
View Item |