New inequalities for Holmes-Thompson and Busemann measures

Martini Horst and Mustafaev Zokhrab: New inequalities for Holmes-Thompson and Busemann measures. In: Acta scientiarum mathematicarum 86. pp. 321-330. (2020)

[thumbnail of math_086_numb_001-002_321-330.pdf] Cikk, tanulmány, mű
math_086_numb_001-002_321-330.pdf
Restricted to: SZTE network

Download (169kB)

Abstract

Some sharp bounds for the inner radius and the outer radius of the unit ball of a (normed or) Minkowski space with respect to its isoperimetrix are known. To find more such bounds is a challenging problem. Related to this motivation, we derive new sharp inequalities between inner and outer radii for the Holmes–Thompson and Busemann measures. Cross-section measures as well as the Blaschke–Santaló inequality will be used to obtain these new inequalities.

Item Type: Article
Heading title: Analysis
Journal or Publication Title: Acta scientiarum mathematicarum
Date: 2020
Number: 86
ISSN: 2064-8316
Page Range: pp. 321-330
Related URLs: http://acta.bibl.u-szeged.hu/69543/
DOI: 10.14232/actasm-019-130-4
Uncontrolled Keywords: Matematika
Additional Information: Bibliogr.: p. 329-330. ; összefoglalás angol nyelven
Subjects: 01. Natural sciences
01. Natural sciences > 01.01. Mathematics
Date Deposited: 2020. Jul. 27. 11:16
Last Modified: 2020. Jul. 27. 11:16
URI: http://acta.bibl.u-szeged.hu/id/eprint/69375

Actions (login required)

View Item View Item