Martini Horst and Mustafaev Zokhrab: New inequalities for Holmes-Thompson and Busemann measures. In: Acta scientiarum mathematicarum 86. pp. 321-330. (2020)
![]() |
Cikk, tanulmány, mű
math_086_numb_001-002_321-330.pdf Restricted to: SZTE network Download (169kB) |
Abstract
Some sharp bounds for the inner radius and the outer radius of the unit ball of a (normed or) Minkowski space with respect to its isoperimetrix are known. To find more such bounds is a challenging problem. Related to this motivation, we derive new sharp inequalities between inner and outer radii for the Holmes–Thompson and Busemann measures. Cross-section measures as well as the Blaschke–Santaló inequality will be used to obtain these new inequalities.
Item Type: | Article |
---|---|
Heading title: | Analysis |
Journal or Publication Title: | Acta scientiarum mathematicarum |
Date: | 2020 |
Number: | 86 |
ISSN: | 2064-8316 |
Page Range: | pp. 321-330 |
Related URLs: | http://acta.bibl.u-szeged.hu/69543/ |
DOI: | 10.14232/actasm-019-130-4 |
Uncontrolled Keywords: | Matematika |
Additional Information: | Bibliogr.: p. 329-330. ; összefoglalás angol nyelven |
Subjects: | 01. Natural sciences 01. Natural sciences > 01.01. Mathematics |
Date Deposited: | 2020. Jul. 27. 11:16 |
Last Modified: | 2020. Jul. 27. 11:16 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/69375 |
Actions (login required)
![]() |
View Item |