Fractional eigenvalue problems on RN

Grecu Andrei: Fractional eigenvalue problems on RN. (2020)

[thumbnail of ejqtde_2020_026.pdf]
Preview
Teljes mű
ejqtde_2020_026.pdf

Download (445kB) | Preview

Abstract

Let N ≥ 2 be an integer. For each real number s ∈ (0, 1) we denote by (−∆) s the corresponding fractional Laplace operator. First, we investigate the eigenvalue problem (−∆) su = λV(x)u on RN, where V : RN → R is a given function. Under suitable conditions imposed on V we show the existence of an unbounded, increasing sequence of positive eigenvalues. Next, we perturb the above eigenvalue problem with a fractional (t, p)-Laplace operator, when t ∈ (0, 1) and p ∈ (1, ∞) are such that t < s and s − N/2 = t − N/p. We show that when the function V is nonnegative on RN, the set of eigenvalues of the perturbed eigenvalue problem is exactly the unbounded interval (λ1, ∞), where λ1 stands for the first eigenvalue of the initial eigenvalue problem.

Item Type: Journal
Publication full: Electronic journal of qualitative theory of differential equations
Date: 2020
Number: 26
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2020.1.26
Uncontrolled Keywords: Differenciálegyenlet
Additional Information: Bibliogr.: p. 15-17. ; összefoglalás angol nyelven
Date Deposited: 2020. Jun. 08. 09:07
Last Modified: 2021. Oct. 20. 13:52
URI: http://acta.bibl.u-szeged.hu/id/eprint/69530

Actions (login required)

View Item View Item