Grecu Andrei: Fractional eigenvalue problems on RN. (2020)
Preview |
Teljes mű
ejqtde_2020_026.pdf Download (445kB) | Preview |
Abstract
Let N ≥ 2 be an integer. For each real number s ∈ (0, 1) we denote by (−∆) s the corresponding fractional Laplace operator. First, we investigate the eigenvalue problem (−∆) su = λV(x)u on RN, where V : RN → R is a given function. Under suitable conditions imposed on V we show the existence of an unbounded, increasing sequence of positive eigenvalues. Next, we perturb the above eigenvalue problem with a fractional (t, p)-Laplace operator, when t ∈ (0, 1) and p ∈ (1, ∞) are such that t < s and s − N/2 = t − N/p. We show that when the function V is nonnegative on RN, the set of eigenvalues of the perturbed eigenvalue problem is exactly the unbounded interval (λ1, ∞), where λ1 stands for the first eigenvalue of the initial eigenvalue problem.
Item Type: | Journal |
---|---|
Publication full: | Electronic journal of qualitative theory of differential equations |
Date: | 2020 |
Number: | 26 |
ISSN: | 1417-3875 |
DOI: | 10.14232/ejqtde.2020.1.26 |
Uncontrolled Keywords: | Differenciálegyenlet |
Additional Information: | Bibliogr.: p. 15-17. ; összefoglalás angol nyelven |
Date Deposited: | 2020. Jun. 08. 09:07 |
Last Modified: | 2021. Oct. 20. 13:52 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/69530 |
Actions (login required)
View Item |