Amster Pablo and Rogers Colin: On a Dirichlet boundary value problem for an Ermakov-Painlevé I equation : a Hamiltonian EPI system. (2023)
Teljes mű
ejqtde_2023_023.pdf Download (421kB) |
Abstract
Here, a proto-type Ermakov–Painlevé I equation is introduced and a homogeneous Dirichlet-type boundary value problem analysed. In addition, a novel Ermakov– Painlevé I system is set down which is reducible by an involutory transformation to the autonomous Ermakov–Ray–Reid system augmented by a single component Ermakov– Painlevé I equation. Hamiltonian such systems are delimited.
Item Type: | Journal |
---|---|
Publication full: | Electronic journal of qualitative theory of differential equations |
Date: | 2023 |
Number: | 23 |
ISSN: | 1417-3875 |
Number of Pages: | 14 |
Language: | English |
Place of Publication: | Szeged |
DOI: | 10.14232/ejqtde.2023.1.23 |
Uncontrolled Keywords: | Dirichlet-határérték-probléma, Hamilton-rendszer |
Additional Information: | Bibliogr.: p. 11-14. ; összefoglalás angol nyelven |
Date Deposited: | 2023. Nov. 16. 12:15 |
Last Modified: | 2023. Nov. 16. 12:15 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/82273 |
Actions (login required)
View Item |