On a Dirichlet boundary value problem for an Ermakov-Painlevé I equation : a Hamiltonian EPI system

Amster Pablo; Rogers Colin: On a Dirichlet boundary value problem for an Ermakov-Painlevé I equation : a Hamiltonian EPI system. (2023)

[thumbnail of ejqtde_2023_023.pdf] Teljes mű
ejqtde_2023_023.pdf

Letöltés (421kB)

Absztrakt (kivonat)

Here, a proto-type Ermakov–Painlevé I equation is introduced and a homogeneous Dirichlet-type boundary value problem analysed. In addition, a novel Ermakov– Painlevé I system is set down which is reducible by an involutory transformation to the autonomous Ermakov–Ray–Reid system augmented by a single component Ermakov– Painlevé I equation. Hamiltonian such systems are delimited.

Mű típusa: Folyóirat
Folyóirat/könyv/kiadvány címe: Electronic journal of qualitative theory of differential equations
Dátum: 2023
Szám: 23
ISSN: 1417-3875
Oldalszám: 14
Nyelv: angol
Kiadás helye: Szeged
DOI: 10.14232/ejqtde.2023.1.23
Kulcsszavak: Dirichlet-határérték-probléma, Hamilton-rendszer
Megjegyzések: Bibliogr.: p. 11-14. ; összefoglalás angol nyelven
Feltöltés dátuma: 2023. nov. 16. 12:15
Utolsó módosítás: 2023. nov. 16. 12:15
URI: http://acta.bibl.u-szeged.hu/id/eprint/82273
Bővebben:
Tétel nézet Tétel nézet