Yoshida Norio: Exact solution of the susceptible-exposed-infectious-recovered-deceased (SEIRD) epidemic model. (2024)
Előnézet |
Teljes mű
ejqtde_2024_008.pdf Letöltés (909kB) | Előnézet |
Absztrakt (kivonat)
An exact solution of an initial value problem for the Susceptible–Exposed– Infectious–Recovered–Deceased (SEIRD) epidemic model is derived, and various properties of the exact solution are obtained. It is shown that the parametric form of the exact solution satisfies some linear differential system including a positive solution of an Abel differential equation of the second kind. In this paper Abel differential equations play an important role in establishing the exact solution of the SEIRD differential system, in particular the number of infected individuals can be represented in a simple form by using a positive solution of an initial value problem for an Abel differential equation. Uniqueness of positive solutions of an initial value problem to SEIRD differential system is also investigated, and it is shown that the exact solution is a unique solution in the class of positive solutions.
| Mű típusa: | Folyóirat |
|---|---|
| Folyóirat/könyv/kiadvány címe: | Electronic journal of qualitative theory of differential equations |
| Dátum: | 2024 |
| Szám: | 8 |
| ISSN: | 1417-3875 |
| Oldalszám: | 37 |
| Nyelv: | angol |
| Kiadás helye: | Szeged |
| DOI: | 10.14232/ejqtde.2024.1.8 |
| Kulcsszavak: | Differenciálrendszer - lineáris, Abel-differenciálegyenlet, Dinamikus rendszer, SEIRD járványmodell |
| Megjegyzések: | Bibliogr.: p. 35-37. ; összefoglalás angol nyelven |
| Szakterület: | 01. Természettudományok 01. Természettudományok > 01.01. Matematika |
| Feltöltés dátuma: | 2025. nov. 17. 15:21 |
| Utolsó módosítás: | 2025. nov. 17. 15:21 |
| URI: | http://acta.bibl.u-szeged.hu/id/eprint/88810 |
![]() |
Tétel nézet |

