Critical points approaches for multiple solutions of a quasilinear periodic boundary value problem

Heidarkhani Shapour; Moradi Shahin; Caristi Giuseppe; Ferrara Massimiliano: Critical points approaches for multiple solutions of a quasilinear periodic boundary value problem. (2024)

[thumbnail of ejqtde_2024_060.pdf]
Előnézet
Teljes mű
ejqtde_2024_060.pdf

Letöltés (549kB) | Előnézet

Absztrakt (kivonat)

Optimization problems are omnipresent in the mathematical modeling of real world systems and cover a very extensive range of applications becoming apparent in all branches of Economics, Finance, Materials Science, Astronomy, Physics, Structural and Molecular Biology, Engineering, Computer Science, and Medicine. In this paper, we aim to delve deeper into the multiplicity findings concerning a specific class of quasilinear periodic boundary value problems. In fact, as an optimization problem, we look for the critical points of the energy functional related to the problem. Utilizing a corollary derived from Bonanno’s local minimum theorem, we investigate the existence of a one solution under certain algebraic conditions on the nonlinear term. Additionally, we explore conditions that lead to the existence of two solutions, incorporating the classical Ambrosetti-Rabinowitz (AR) condition alongside algebraic criteria. Moreover, by employing two critical point theorems one by Averna and Bonanno, and another by Bonanno, we establish the existence of two and three solutions in a particular scenario. To illustrate our findings, we provide an example.

Mű típusa: Folyóirat
Folyóirat/könyv/kiadvány címe: Electronic journal of qualitative theory of differential equations
Dátum: 2024
Szám: 60
ISSN: 1417-3875
Oldalszám: 26
Nyelv: angol
Kiadás helye: Szeged
DOI: 10.14232/ejqtde.2024.1.60
Kulcsszavak: Differenciálegyenlet - nemlineáris - ordinárius
Megjegyzések: Bibliogr.: p. 24-26. ; összefoglalás angol nyelven
Szakterület: 01. Természettudományok
01. Természettudományok > 01.01. Matematika
Feltöltés dátuma: 2025. nov. 18. 15:25
Utolsó módosítás: 2025. nov. 18. 15:25
URI: http://acta.bibl.u-szeged.hu/id/eprint/88862
Bővebben:
Tétel nézet Tétel nézet