Strong fast invertibility and Lyapunov exponents for linear systems

Noethen Florian: Strong fast invertibility and Lyapunov exponents for linear systems. (2025)

[thumbnail of ejqtde_2025_033.pdf]
Előnézet
Teljes mű
ejqtde_2025_033.pdf

Letöltés (1MB) | Előnézet

Absztrakt (kivonat)

With the goal of deriving the existence of a dominated splitting, Quas, Thieullen and Zarrabi introduced the concept of strong fast invertibility for linear cocycles in 2019. Here, we take a closer look at strongly fast invertible systems with bounded coefficients. By linking the dimensions at which a system admits strong fast invertibility to the multiplicities of Lyapunov exponents, we are able to give a full characterization of regular strongly fast invertible systems similar to that of systems with stable Lyapunov exponents. In particular, we show that the stability of Lyapunov exponents implies strong fast invertibility (even in the absence of regularity). Central to our arguments are certain induced systems on spaces of exterior products that represent the evolution of volumes. Finally, we derive convergence results for the computation of Lyapunov exponents via Benettin’s algorithm using perturbation theory. While the stronger assumption of stable Lyapunov exponents clearly leaves more freedom on how to choose stepsizes, we derive conditions for the stepsizes with which convergence can be ensured even if a system is only strongly fast invertible.

Mű típusa: Folyóirat
Folyóirat/könyv/kiadvány címe: Electronic journal of qualitative theory of differential equations
Dátum: 2025
Szám: 33
ISSN: 1417-3875
Oldalszám: 45
Nyelv: angol
Kiadás helye: Szeged
DOI: 10.14232/ejqtde.2025.1.33
Kulcsszavak: Ljapunov-exponens
Megjegyzések: Bibliogr.: p. 43-45. ; összefoglalás angol nyelven
Szakterület: 01. Természettudományok
01. Természettudományok > 01.01. Matematika
Feltöltés dátuma: 2025. nov. 19. 15:21
Utolsó módosítás: 2025. nov. 19. 15:21
URI: http://acta.bibl.u-szeged.hu/id/eprint/88913
Bővebben:
Tétel nézet Tétel nézet