Ramesh Golla; Osaka Hiroyuki: On a subclass of norm attaining operators. In: Acta scientiarum mathematicarum, (87) 1-2. pp. 247-263. (2021)
Cikk, tanulmány, mű
math_087_numb_001-002_247-263.pdf Hozzáférés: Csak SZTE egyetemi hálózatról Letöltés (260kB) |
Absztrakt (kivonat)
A bounded linear operator T : H1 → H2, where H1, H2 are Hilbert spaces, is said to be norm attaining if there exists a unit vector x ∈ H1 such that kT xk = kTk and absolutely norm attaining (or AN -operator) if T|M : M → H2 is norm attaining for every closed subspace M of H1. We prove a structure theorem for positive operators in β(H) := {T ∈ B(H) : T|M : M → M is norm attaining for all M ∈ RT }, where RT is the set of all reducing subspaces of T. We also compare our results with those of absolutely norm attaining operators. Later, we characterize all operators in this new class.
Mű típusa: | Cikk, tanulmány, mű |
---|---|
Rovatcím: | Analysis |
Befoglaló folyóirat/kiadvány címe: | Acta scientiarum mathematicarum |
Dátum: | 2021 |
Kötet: | 87 |
Szám: | 1-2 |
ISSN: | 2064-8316 |
Oldalak: | pp. 247-263 |
Nyelv: | angol |
Befoglaló mű URL: | http://acta.bibl.u-szeged.hu/73791/ |
DOI: | 10.14232/actasm-020-426-9 |
Kulcsszavak: | Matematika |
Megjegyzések: | Bibliogr.: p. 262-263. ; összefoglalás angol nyelven |
Feltöltés dátuma: | 2021. nov. 16. 09:07 |
Utolsó módosítás: | 2021. nov. 16. 09:07 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/73928 |
Tétel nézet |