Hajdu András and Hajdu Lajos and Tijdeman Robert: Approximation of the Euclidean distance by Chamfer distances. In: Acta cybernetica, (20) 3. pp. 399-417. (2012)
Preview |
Cikk, tanulmány, mű
actacyb_20_3_2012_3.pdf Download (380kB) | Preview |
Abstract
Chamfer distances play an important role in the theory of distance transforms. Though the determination of the exact Euclidean distance transform is also a well investigated area, the classical chamfering method based upon "small" neighborhoods still outperforms it e.g. in terms of computation time. In this paper we determine the best possible maximum relative error of chamfer distances under various boundary conditions. In each case some best approximating sequences are explicitly given. Further, because of possible practical interest, we give all best approximating sequences in case of small (i.e. 5x5 and 7x7) neighborhoods.
Item Type: | Article |
---|---|
Journal or Publication Title: | Acta cybernetica |
Date: | 2012 |
Volume: | 20 |
Number: | 3 |
ISSN: | 0324-721X |
Page Range: | pp. 399-417 |
Language: | English |
Place of Publication: | Szeged |
Related URLs: | http://acta.bibl.u-szeged.hu/38533/ |
DOI: | 10.14232/actacyb.20.3.2012.3 |
Uncontrolled Keywords: | Számítástechnika, Kibernetika, Matematika |
Additional Information: | Bibliogr.: p. 415-417. és a lábjegyzetekben ; összefoglalás angol nyelven |
Subjects: | 01. Natural sciences 01. Natural sciences > 01.01. Mathematics 01. Natural sciences > 01.02. Computer and information sciences |
Date Deposited: | 2016. Oct. 17. 10:38 |
Last Modified: | 2022. Jun. 17. 14:45 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/30838 |
Actions (login required)
![]() |
View Item |