Approximation of the Euclidean distance by Chamfer distances

Hajdu András and Hajdu Lajos and Tijdeman Robert: Approximation of the Euclidean distance by Chamfer distances. In: Acta cybernetica, (20) 3. pp. 399-417. (2012)

[thumbnail of actacyb_20_3_2012_3.pdf]
Preview
Cikk, tanulmány, mű
actacyb_20_3_2012_3.pdf

Download (380kB) | Preview

Abstract

Chamfer distances play an important role in the theory of distance transforms. Though the determination of the exact Euclidean distance transform is also a well investigated area, the classical chamfering method based upon "small" neighborhoods still outperforms it e.g. in terms of computation time. In this paper we determine the best possible maximum relative error of chamfer distances under various boundary conditions. In each case some best approximating sequences are explicitly given. Further, because of possible practical interest, we give all best approximating sequences in case of small (i.e. 5x5 and 7x7) neighborhoods.

Item Type: Article
Journal or Publication Title: Acta cybernetica
Date: 2012
Volume: 20
Number: 3
ISSN: 0324-721X
Page Range: pp. 399-417
Language: English
Place of Publication: Szeged
Related URLs: http://acta.bibl.u-szeged.hu/38533/
DOI: 10.14232/actacyb.20.3.2012.3
Uncontrolled Keywords: Számítástechnika, Kibernetika, Matematika
Additional Information: Bibliogr.: p. 415-417. és a lábjegyzetekben ; összefoglalás angol nyelven
Subjects: 01. Natural sciences
01. Natural sciences > 01.01. Mathematics
01. Natural sciences > 01.02. Computer and information sciences
Date Deposited: 2016. Oct. 17. 10:38
Last Modified: 2022. Jun. 17. 14:45
URI: http://acta.bibl.u-szeged.hu/id/eprint/30838

Actions (login required)

View Item View Item