Positive ground state of coupled planar systems of nonlinear Schrödinger equations with critical exponential growth

Chen Jing and Zhang Xinghua: Positive ground state of coupled planar systems of nonlinear Schrödinger equations with critical exponential growth. (2022)

[thumbnail of ejqtde_2022_048.pdf]
Preview
Teljes mű
ejqtde_2022_048.pdf

Download (508kB) | Preview

Abstract

In this paper, we prove the existence of a positive ground state solution to the following coupled system involving nonlinear Schrödinger equations: −∆u + V1(x)u = f1(x, u) + λ(x)v, x ∈ R2 −∆v + V2(x)v = f2(x, v) + λ(x)u, x ∈ R2 where λ, V1, V2 ∈ C(R2 ,(0, +∞)) and f1, f2 : R2 × R → R have critical exponential growth in the sense of Trudinger–Moser inequality. The potentials V1(x) and V2(x) satisfy a condition involving the coupling term λ(x), namely 0 < λ(x) ≤ λ0 p V1(x)V2(x). We use non-Nehari manifold, Lions’s concentration compactness and strong maximum principle to get a positive ground state solution. Moreover, by using a bootstrap regularity lifting argument and L q -estimates we get regularity and asymptotic behavior. Our results improve and extend the previous results.

Item Type: Journal
Publication full: Electronic journal of qualitative theory of differential equations
Date: 2022
Number: 48
ISSN: 1417-3875
Language: English
DOI: 10.14232/ejqtde.2022.1.48
Uncontrolled Keywords: Schrödinger egyenlet, Trudinger-Moser-egyenlőtlenség
Additional Information: Bibliogr.: p. 22-23. ; összefoglalás angol nyelven
Subjects: 01. Natural sciences
01. Natural sciences > 01.01. Mathematics
Date Deposited: 2023. Mar. 13. 10:29
Last Modified: 2023. Mar. 13. 10:29
URI: http://acta.bibl.u-szeged.hu/id/eprint/78333

Actions (login required)

View Item View Item